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1 Introduction

It is well known that the study of central simple algebras with involution is closely related to
that of classical simple adjoint algebraic groups, the latter occuring as automorphism groups
of these algebras (see for example [KMRT]). On the other hand there is a connection between
central simple algebras with involution and algebraic groups via invariant theory. For each
type of the simple groups A,,, B, C,, and D,, there exists a generic algebra so that algebras in
the corresponding class occur as specializations.The first case ever considered was by Amitsur
and Procesi ([A], [P1]), who constructed a generic division algebra corresponding to the inner
type of A,,. Generic central simple algebras with orthogonal or symplectic involutions were
later introduced by Rowen [R1]. Procesi [P2] showed that for the groups PGL,, PGO,, and
PSp,,, the generic algebras occur as invariants of the groups acting on the matrix algebras
over the field generated by the entries of the generic matrices. The centers of the generic
algebras also occur as invariants of these groups acting on this field. As shown by Procesi
[P2] for PGL,,, Berele and Saltman [BS] for PGO,, and PSp,,, and more generally for any
reductive group by Saltman [S1], the center can also be described as multiplicative invariant
field of the corresponding Weyl group.

Let G be a simple adjoint connected algebraic group of type D, over a field F' of character-
istic different from 2. A model is the group PGO™(q) of proper similitudes of a nonsingular
quadratic form ¢ of dimension 8, modulo the center. The Dynkin diagram

of G over a separable closure F of F admits the permutation group of three symbols S3 as
its automorphism group. It follows that S3 acts as outer automorphisms of G(F') and that
Aut (G(f )) is the semidirect product G(F) x S3. Following [KMRT] there is a notion of
an associative trialitarian algebra T over F' such that Aut(7) = G x S3 and G = Aut(T)°,
the connected component of identity of Aut(7"). Very few examples of trialitarian algebras
are known. In this paper, we construct generic trialitarian algebras on the lines of Amitsur,

Rowen, Procesi and Saltman. We show that these algebras occur as invariants of the group



PGO{ S5 acting on certain matrix algebras; the base field also occurs as invariants of the
same group acting on the field generated by entries of generic matrices. We further show
that the generic trialitarian algebra over a field F' specializes to any given trialitarian algebra
defined over an extension of F'.

The paper is organized as follows. In Section 2 we recall some properties of the Clifford
algebra of a nonsingular quadratic form ¢, which plays an important role in our construction,
and show in some detail how it is related to the Lie algebra of the orthogonal group O(q).
In Section 3 we describe triality at the level of Lie algebras (local triality), using the Clifford
algebra of the norm form of a Cayley algebra, as in [KMRT]. In Section 4 we give an explicit
description of the action of S3 on the Lie algebra of skew-symmetric (8 x 8)-matrices. Triality
at the level of the adjoint algebraic group is the topic of Section 5. Some properties of central
simple algebras with orthogonal involutions are recalled in Section 6. Trialitarian algebras
are defined in Section 7. A cohomological definition of generic trialitarian algebras follows
in Section 8 and it is shown that these algebras are division algebras. In the main Section 9
we give another, more explicit construction of generic trialitarian algebras, much in the
spirit of the recent “Lectures on Division Algebras” [S2] of Saltman. The generic trialitarian
algebra also occurs as the algebra of invariants of PGOZ xS; acting on generic matrices
(Section 10). In Section 11 we show that the generic trialitarian algebra specializes to any
trialitarian algebra. Similar constructions for generic algebras with orthogonal involutions
with trivial discriminant, resp. with involutions of second kind, corresponding to the groups
PGO3, , resp. PGU,, or PGL, xZ/2Z are briefly sketched in the last Section 12.

Fields are assumed to have characteristic different from 2 and we restrict to commutative
rings in which 2 is invertible. For any homomorphism of commutative rings ¢ : R — R’
and any R-module V', V ®, R’ denotes the tensor product of V' with R" over R. Unadorned
tensor products are over F'. For any ring A, A* denotes the group of units of A.
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Mumbai, and the Eidgenossische Technische Hochschule, Ziirich, for their respective hospi-
talities when this work was done.

2 The Clifford algebra and the Lie algebra of a
quadratic space

Let ¢ : V — F be a quadratic form on V, with associated polar bilinear form b,(z,y) =
q(x +vy) — q(x) — q(y). We call the pair (V,q) a quadratic space if b, is nonsingular. The
adjoint involution o, on Endp(V) is defined through the identity

bq(dq(f)(l’)7y) - bq(ZL‘, f(y))
for z, y € V and f € Endp(V). The space

0(q) = Skew(Endp(V),0,)
= {f €Endp(V) | 0y(f) = =}
= {f € Endp(V) | by (z, f(y)) + by (f(x),y) = 0}

of skew-symmetric elements of Endp (V') with respect to the involution o, is a Lie subalgebra
(of dimension @) of Endp (V) for the Lie bracket [f,g] = fog—go f of Endg(V). The
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Lie algebra o(q) is the Lie algebra of the orthogonal group O(q). If ¢ =< 1,1,...,1 >,
e, ¢ xie;) = Y, x7 with respect to a basis (eq,...,e,), and Endp(V) is identified
with M, (F) through the choice of the same basis, then o, is the transpose a +— a' and
0(q) = Skew,,(F"), the set of (n x n)-skew-symmetric matrices with entries in F'.

Let C(V, q) be the Clifford algebra of the quadratic space (V, q). We recall that C'(V, q) =
TV /I where TV is the tensor algebra of V and [ is the ideal of TV generated by the elements
x®x—q(x)-1, x € V. The vector space V, identified with a subspace of C(V, q) through
the natural map V' — C(V, q), generates C(V, q) as an algebra. The even Clifford algebra
Co(V,q) is the subalgebra of C(V,q) generated by products of an even number of elements
of V. The properties of the Clifford algebra which we shall need are summarized in the
following proposition (for a proof, see for example [SCH]):

Proposition 2.1 Let (V,q) be a nonsingular quadratic space of even dimension n = 21.

1) The F-algebra C(V,q) is central simple of dimension 2% and has a unique involution T
which is the identity on V.

2) The center Z of Co(V, q) is an étale quadratic algebra over F' of the form Z = F|z]/(x*—0)
where § = (—1)"det(b,). The algebra Co(V,q) is central separable over Z of rank 221,
Suppose that € is even. Then the involution T restricts to an involution o of Co(V, q) which
is the identity on Z. Further 1y is of orthogonal type if | is congruent to 0 modulo 4 and is
of symplectic type if | is congruent to 2 modulo 4.

The Lie algebra o(q) can be identified with a subalgebra of Skew(Cy(V, q), 7o), as follows.
For z, y, z € V and the Lie product [x,y] = xy — yx in C(V, q), we have:

[[x,y],z] = 2(bQ(y7z)x - bq(ZL‘,Z>y) eV. (1)

Let [V, V] € C(V,q) be the subspace spanned by the [x,y] = zy — yx for all z, y € V. In
view of (1) we have a linear map

ad: [V,V] — Endp(V), ¢~ adg,
defined by ad¢(z) = [€, 2] for £ € [V, V] and z € V.

Lemma 2.2 The subspace [V, V] is a Lie subalgebra of Skew (C’O(V, q),TO), its image under
ad is contained in 0(q) and ad induces an isomorphism of Lie algebras:

ad: [V, V] = o(q).

Proof See [KMRT, Lemma (45.3)].
0J

Example 2.3 Let ¢ —< 1,1,...,1 > and let (e1,...,e,) be an orthonormal basis of q.
Then [e;, e;] = 2e;e; and (e;e;, @ < j), is a basis of [V, V]. Let (e;;,1 < 4,5 < n), be the
standard basis of M, (F), let &; be the skew-symmetric matrix e;; — e;;, ¢ < j, and let fi be
the column vector with entry 1 in k-th position and zero entries elsewhere. We have

ade, e, (fr) = 2ade,e, (fx) = 4(eidjn — €;0i) = 4Eij fi

so that ad™" maps &;; to the element %eiej of Co(V, q).
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We have more in dimension 8:

Lemma 2.4 Let Z be the center of the even Clifford algebra Cy(V,q). If V has dimen-
sion 8, the embedding [V, V] C Skew (C’O(V, q),TO) induces a canonical isomorphism of Lie
algebras over Z, [V,V] ®@p Z = SkeW(CO(V, q),TO). Thus ad induces a Z-isomorphism
Skew (Co(V, ), 70) = 0(q) ®F Z of Lie algebras.

Proof Since dimp V' = 8, the involution 7y of Cy(V, q) is of orthogonal type (see (2.1)) and
dimy Skew (Co(V, q), 70) = 28. Let (eq, ... ,es) be an orthogonal basis of V. The elements
e;ej, © < j, are linearly independent over Z in Cy(V,q). Hence the canonical map [V, V] ®
7 — Skew (C’O(V, q), 7') induced by the product in Cy(V, q) is injective. It is surjective by a
dimension count.

O

Similitudes of the quadratic space (V,q) are linear automorphisms of V' with q( f (ZL‘)) =
m(f)q(z), where m(f) € F* is the multiplier of the similitude. They form a group GO(q).
If dimp V = n is even, a similitude f is proper if det(f) = m(f)"/2. Proper similitudes form
a normal subgroup GO™(q) of GO(q) of index 2. Similitudes are isometries if they have
multiplier 1.

It readily follows from the definition of Clifford algebras that isometries of (V,¢q) induce
automorphisms of C'(V, ¢). For similitudes we have:

Proposition 2.5 Any similitude f € GO(q) with multiplier m(f) induces an automorphism

C(f) of (Co(V,q),70) such that C(f)(zy) = m(f)" f(z)f(y) for x, y € V. The automor-
phism C(f) restricts to the identity on the center Z of Co(V,q) if and only if f is proper.
Further, we have ado C(f) oad™! = Int(f).

Proof The first two claims are standard (see for example [KMRT]). Using the identity in
(1) we have for x, y, z € V:

(ado C(f)) ([, 9]) (2) = 2m(f) " ((f(2)bg(f(y), 2) = F(W)bg(f(2), 2))
and

(Int(f) o ad) ([r.y])(2) = 2f(aby(y, /7(2)) — vy
ST

The last claim follows from m(f)~'b,(f(y), z) = bq(y7 f4z)).

0“
LS

8
~~

For any v € F'*, v-1y is a similitude with multiplier 22, so that C(v-1y/) acts trivially on

Co(V,q) and PGO(q) = GO(q)/F* acts on Cy(V, q). We observe that the homomorphism
C: PGO(q) — Autr(Co(V, q), 70) (2)

is injective if dimV > 3, in view of (2.5) and the fact that o(q) generates Endg(V) as
an algebra. Let PGO*(q) = GO*(q)/F*. By (2.5) the homomorphism (2) restricts to a
homomorphism

C: PGO™(q) — Auty (C’O(V, q),TO).



3 Cayley algebras and local triality

The following presentation of local triality is taken from [KMRT]. Let € be a Cayley algebra
over I’ with conjugation 7 : x +— 7 and norm n: z +— 2Z. The new multiplication xxy =%y
satisfies

v (yxx) = (2 5y) = n(2)y (3)
for x, y € €. Further, the polar form b, is associative with respect to x, in the sense that
ba(x %y, 2) = by(z,y * 2).
Proposition 3.1 Forx,y € €, letr,(y) = yxx and {,(y) = x*xy. The map € — Endp(CHE)

given by
. 0 ¢,
v ry O

induces isomorphisms a: (C(€,n),7) = (Endp(€ & €), 041) and
Qo - (00(67 n)a 7—0) = (EndF(€)7 Jn) X (EndF(Q:)v Un)a (4)
of algebras with involution. Further cg maps [€, €] C Co(€, n) into o(n) x o(n).

Proof We have r,(€,(y)) = €. (r.(y)) = n(z) -y by (3). Thus the existence of the map «
follows from the universal property of the Clifford algebra. The fact that a is compatible
with involutions is equivalent to

ba(z % (2 %y),u) = ba(z,y * (uxz))
for all z, y, z, v in €. This formula follows from
ba(z* (2% y),u) = ba(u,z x (zxy)) = ba(u*z,2xy) = ba(z %y, uxx) = by(2,y * (u*z)).

Since C(€,n) is central simple, the map « is an isomorphism by a dimension count. The
fact that the image of [€, €] under «y lies in o(n) x o(n) follows from the fact that aq is an
isomorphism of algebras with involution.

U
We have an (injective) homomorphism
aole,goad™! : o(n) — o(n) x o(n) C Endp(¢) x Endp(€).
For any A € o(n) let ap|fe,egoad ™" (A) = (AT, A7).

Proposition 3.2 (Local triality) For any A € o(n), the elements A\, A\~ € o(n) satisfy
AM(zxy) = Mz)xy+axA(y), (5)
A(zxy) = A(z)xy+a*A(y), (6)
Mrxy) = A (@) xy+axAT(y) (7)

forallz, y € €. Further the pair (A\*, A7) is uniquely determined by any of the three relations.
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Proof Let ¢ =ad '()). Since aq is an isomorphism of algebras we have

ag([¢ 2]) = [a0(€), ao(x)] = <>\0+ )\O> <r(1 %C) B <T0$ %) ()\J /\0) .

On the other hand, [, z] = A(x) and

alea) = (0 )

so that
Azxy) —zx A (y) = AMz) xy
AN (y*xz) — A (y)*xz =y* A\(z).
This gives formulas (5) and (6). From (5) we obtain
ba(AT(z xy), 2) = ba(A (@) * ¥, 2) + ba(z * A" (y), 2).
Since by(z * y, 2) = by(x,y * z) and since A\~, A and A" are in o(n), this implies
—bu(z, y * AT (2)) = —ba(z, My * 2)) + ba(2, A" (y) * 2)

for all z, y, and z in o(n), hence (7). We finally check that the pair (AT, A7) associated to A is
uniquely determined by (5). It suffices to check that the only pair of linear maps A, As € o(n)
satisfying A\i(z xy) = & x A\y(y) for all z, y € € is the pair (0,0). We have \(Ty) = TAa(y).
Then x = 1 implies A\ (7) = A2(y), so that A\ (T ) = TA1(¥) and A\i(x) = za for a = A\(1).
This finally implies (zy)a = z(ya) for all z, y € € and a lies in F'. However \(z) = axz, for
a € F and Ay € o(n), implies a = 0.

0

Let d,, resp. d,2 be the endomorphisms of o(n) defined by d,(A\) = A" and d,2(\) = A~ for
A € o(n), so that

apoad™ = (d,,d) € Endp(€) x Endp(€).

ps Yp

Corollary 3.3 The endomorphisms d, and d,» are Lie algebra automorphisms of o(n) and
satisfy the relations (d,)* = d,2, (d,)* = 1.

Proof The claims follow from uniqueness in (3.2).

OJ

The conjugation 7 of € induces an automorphism (of Lie algebras) d, : A — w7 of o(n)
(the product A7 is taken in Endp(C)).

Proposition 3.4 The relations (d.)* = 1 and dr o d, = d,2 o d, hold in Autg(o(n)) and
{dr,d,} generate a subgroup of AutF(o(n)), isomorphic to Ss.



Proof The first relation is obvious. We check the second one. Since 7 is an isometry of n,
7 induces an automorphism C(m) of C'(€,n). We have C(7) = Int(e) for e = 1¢ € €, hence
aoC(r)oa™ =Int(a(e)). Plugging in the definition of a, we get for (} ) € Endp(€a @),

(aoC(m)oa™)(§g) = ("0 xpx)- (8)
On the other hand we know that ad o C(7) o ad™* = Int(7) on o(n) by (2.5), so that
(ago C(m)oag')(dy(N),de(N) = (7de(M, 7rd )\) )
Qg o C )o ad ()

(d,
(
= (aooad oadoC(m)oad™')(})
(g oad™ ) (mAT)

(do(mAT), dy2(mAT))

and the second relation holds. Thus we get a homomorphism S; — Aut F(o(n)). The fact
that it is injective follows from the explicit formulas given in the next section.
O

Remark 3.5 The elements A of og fixed under the action of Ss are such that A(z xy) =
AMz)*y+axxA(y) for all z, y € €. Such A are derivations of (&, x). They define a Lie algebra
of type Gb.

4 Triality for Skew-symmetric Matrices

Let ¢ be the 8-dimensional quadratic form < 1,1,...,1 >. The Lie algebra of skew-
symmetric (8 x 8)-matrices is the Lie algebra og = 0(¢). In this section we give explicit
formulas for the trialitarian action on 0g. We call the Cayley algebra with norm the identity
form < 1,1,...,1 > the standard Cayley algebra or the algebra of octonions and denote it
@(8). There exists an orthogonal basis (1¢ = ey, ... ,eg) of €(8) such that the multiplication
table of €(8) is

€1 €9 €3 €4 €5 €6 €7 €8

€1]¢€1 €2 €3 €4 €5 €6 €7 €s
€2 —€ €4 —€3 —€ €5 —€g €7
€3 | €3 —€4 —€ €2 —€7 €s €5 —6€g
€4 | €4 €3 —€2 —€1 —€g —€7 €6 €5 (9)
€5 | €5 €6 €7 € —€1 —€y —€3 —€4
€6 | €6 —€5 —€8 €7 €2 —€1 —¢ €3
€r | €7 €g —€5 —6¢ €3 €4 —€1 —€2
€g | s —€7 €6 —€5 €4 —€3 €2 —€

Let x;;, 1 <1i,j <8, be indeterminates and let F'(z;;) be the quotient field of the polynomial
ring F[z;;] in the indeterminates x;;. The matrix X = Z 265 € Mg (F(x”)) is the
generic matriz and the matrix X = ZK] z;;E;; € 05 @ F(z45), 5 = e;; — €ji, is the generic
skew-symmetric matriz. We compute the image of X under the automorphisms d, and d.
The element &;; corresponds to the product %eiej in the Clifford algebra C(8), through the
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map ad: [€(8),&(8)] — 0(8) (see (2.3)). Thus the image of &; under d, is the matrix of
the automorphism u — 1e; x (uxe;) = 3¢ - (¢; - u) of the space €. Straightforward explicit

2
calculations using the multiplication table (9) show that X =) _._.x;;&;; has as image under

i<j
ag o ad™! the pair of skew-symmetric matrices (dp(X), dpz(X)), where

—x12 + 34 | —®13 —x24 | —T14 +T23 | —T15 +T26 | —T16 — T25 | —T17 +T2g | —T18 — T27
—Ts56 — %78 | —%57 + %68 | —%58 — Te7 | +x37 + 48 | —x38 +T47 | —T35 — T46 36 — T45
—x14 + 23 z13 + 24 z16 + 225 | —T15 + T26 z18 + 27 | —w17 + w2y
+xs58 + 67 | —57 + 68 | —x38 +T47 | —x37 — w48 | +%36 — ®45 | +*35 + a6
—z12 + T34 z17 + 228 | —w18 + w27 | —Ti5 — ®26 | +T16 — T25
+zs56 + 278 | +%35 — Ta6 | +¥36 +Ta5 | +T37 — @48 | +x38 + xa7
T18 — T27 z17 +T28 | —Ti16 + T25 | —T15 — T26
d (X) —— +w36 + x45 | —®35 + w46 | +w38 + T47 | —x37 + T48
P 2 z12 + 34 T13 — T24 T14 + 23
+r56 — 78 | +%57 + Tes | +258 — Te7
z14 + 223 | —T13 + T2
—258 + Te7 | +%57 + Tes
T12 + T34
—xs56 + x78
and
—x12 —®34 | —X13 + T24 | —T14 —T23 | —T15 —T26 | —T16 T T25 | —T17 — T2 | —T18 + T27
+xs56 + 78 | +®57 — 68 | +x58 + xe7 | —x37 — w48 | +¥38 — @47 | +x35 +®46 | —%36 + T45
z14 + 223 | —x13 + 224 | —T16 + T25 z15 + 226 | —w18 + w27 z17 + 28
+x58 + 67 | —57 + 68 | —¥38 + w47 | —w37 — @48 | +¥36 — a5 | +x35 + T46
z12 + 234 | —T17 + 228 z18 + 27 T15 — T26 | —T16 — Z25
+2s56 + 278 | +235 — %46 | +®36 %45 | +®37 — 48 | +T38 + T47
—x18 —x27 | —T17 +T28 z16 + 225 T15 — T26
d 2 (X) — +x36 + 45 | —®35 + 246 | +x38 + w47 | —w37 + 248
P 2 —x12 + %34 | —T13 —T24 | —T14 + T23
+rs56 — %78 | +x57 +*68 | +%58 — Te7
—x14 + T23 13 + T24
—58 + 67 | +%57 + T6s
—x12 + T34
—Zs56 + T78
Since the conjugation 7 of € is given by the matrix P = diag(1, —1,... , —1) with respect

to the basis chosen above, we have

de(X) = PXP =Y —a;&+ Y @&y

1<j 1<i<y

For any skew-symmetric matrix & with entries in F', we obtain formulas for d,, (i) for a = p,
p? and 7 by specializing X to U. This shows that S3 acts faithfully on os.

Proposition 4.1 For any Cayley algebra € with norm n the action of S3 on the Lie algebra
o(n) is faithful. Further the automorphisms d, and d,» are not inner in Endg(C).

Proof Since € isomorphic to €(8) over some field extension of F', it suffices to check the
claims for €(8). We already know the first assertion for €(8). Let det be the determinant
function in Endp(€(8)). If d, were inner, we would have det(d,(X)) = det(X). Let z be
an indeterminate. Specializing X to x19 = x, T34 = 56 = T7s = 1 and all other entries to 0
shows that this is not the case.

0

Remark 4.2 The relations (3.4) can be explicitly verified for skew-symmetric matrices,
using the formulas for d,(X) and d.(X). The general case follows by going to some field
extension of F'.



We next check that the action of S5 on og induces a faithful action of S5 on the Dynkin
diagram of D,. This gives another proof that S3 acts faithfully on 0g as outer automorphisms.

Proposition 4.3 The action defined in (3.4) induces permutations of the simple roots of
0g.

Proof A Cartan subalgebra § of og is generated by the four diagonal blocks &is, E34, Es6
and &z (see [H], p. 187). The automorphism d, of og restricts to an automorphism of .
With respect to the basis u; = &34, us = Es6, uz = E73 and uy = &5 it is given by the
orthogonal matrix

1 1 1 -1
1{1 -1 1 1
T:§ 1 -1 -1 -1
1 -1 1 1

Let F(i) be a field extension of F such that > = —1. In view of [H|, p. 188, the linear forms
gj, j=1,...,4,in 9H*, defined by ¢;(ux) = id;x, form a set of roots of 0g @ F'(¢) such that
the simple roots may be taken as ay = &1 — €9, g = €9 — €3, a3 = €3 — 4 and g = €3 + &4
and the Dynkin diagram is

a3

aq a2
Qq

The action induced by d, on the dual H* is given by the matrix 7% = T~ with respect to
the basis (gx). On the other hand the action of S3 on the Dynkin diagram permutes ay,
ag, oy and leaves ay invariant. The cyclic permutation (aq, ag, o) extends uniquely to an
automorphism of the dual $*. This automorphism is given with respect to the basis (g;) by
the matrix 7% = T—!. This is the claim for the generator p of order 3 of S3. The action of
d, on $ maps uy to —uy and leaves the other u’s fixed. Thus its contragredient action on
H* maps €4 to —e4 and leaves the other €’s fixed. On the level of simple roots it permutes
a3 and ay. This concludes the proof.

O

5 Similitudes and Triality

Let € be any Cayley algebra with norm n. Any proper similitude f € GO"(n) induces
an automorphism C(f) of the even Clifford algebra (Co(€,n),7), which leaves the cen-
ter of Cyp(€,n) invariant (see (2.5)). Thus ag o C(f) o ay* is a pair of automorphisms of
(End r(€), an). It follows from the Skolem-Noether theorem that, for any quadratic space
(V. q), automorphisms of (Endp(V),0,) are of the form Int(f), where f is a similitude of g.
Therefore we have

ago O(f)oag' = (Int(f1), Int(fy))

for similitudes fi, fo. The pair (fi, f2) can be normalized:



Proposition 5.1 For any proper similitude f € GO™(n) with multiplier m(f), there exist
proper similitudes f1, fo such that

Qp © C(f) o O‘O_1 = (Int(fl)v Int(fQ))a
i.e., the diagram
Co(€,n) —— Endp(¢) x Endp(¢)

c(f)l l(lnt(fl),Int(fg)) (10)
Co(€,n) —— Endp(€) x Endp(€)

18 commutative, and

(1) m(f1) " fi(zxy) = f(x)* fa(y),
(2) m(f)" f(zxy) = fa(x) * f1(y)
and

(3) m(fo) " oz xy) = fi(z) * f(y).

The pair (f1, f2) is determined by f up to a factor (m,m™'), m € F*, and we have

m(fi)m(f)m(fe) = 1.

Furthermore, any of the formulas (1) to (3) implies the others.

Proof See the proof of Proposition (35.4) in [KMRT].
0

Passing from GO (n) to PGO™(n) = GO™(n)/F*, we get well defined automorphisms of
PGO*(n), p: [f] = [fi], ¢': [f] = [f2], and uniqueness in (5.1) implies that o/ = p?, p° = 1.
We thus have

(A(a),7*(a)) = awC(a)ag " (11)

for any a € PGO™(n).

Let 7 be the automorphism of PGO™ (n) given by 7(x) = [r]z[r]|, where [r] is the class
in PGO(n) of the conjugation map 7 of €. It follows from (5.1) and the identity 7(z xy) =
7(y) * m(x) that Tp = p?7. Thus:

Corollary 5.2 (Global triality) The set {T,p} generate a subgroup of
Autp(PGO™(n)) isomorphic to Ss.

Proof The fact that Ss acts on PGO™(n) follows from the relations given above. The fact
that the action is faithful follows from the computations in Section 4.
O

The action of S3 on the Lie algebra o(n) and the action on the group PGO™(n) are related
as follows:
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Lemma 5.3 Let [f] € PGO™(n) be represented by f € GO™(n) and p([f]) (resp. p*([f]) be
represented by f1 (resp. fa) as above. We have, for any skew symmetric matriz U,

1) (adoC(f)oad ") (U) = fUf,

2) dy(fUF) = fidy U dy(BUSTY) = Fod, U) £ and dy(Faldf5 ) = fdy(Ud) £

3) dp(fUFTY) = fod 2 (U) f5 s dpe(FUFTY) = fde(U)f7 and de(fld f5 ') = fide (U) fi
Furthermore, for the conjugation m € GO(n), we have

4) dy(mUT) = mwd e (U)m and dp(rUT) = nd,(U)T.

Proof Claim 1) is already in (2.5). We check the first formula of 2). By definition we have
agoad ™ (U) = (d,(U),d,2(U)). Thus
(dpo(fUSY) d(fUFT) = ago 8Krl(ﬂffl)
= (awoC(f)oad )(U)
= (agoC(f) oao o (aooad 1)(1/[)
= Oéo oC(f)oag! ( p(Z/{),dpz(U))
AU i), fade(U) f5)

by (5.1). The proofs of the other formulas in 2) and 3) are similar. Claim 4) is the relation
dd, = d,d; in (3.4).

O

Since S3 acts on PGO™ (n) we may form the semidirect product PGO™(n) xS3. The group
PGO™(n) x S3 consists of pairs (b, 3), where b € PGO™(n) and 3 € S3 with the product
(b,6)-(b,05) = (bﬁ(b'), ﬁﬁ') For any 8 € S3 we denote the corresponding automorphism of

0(‘(1) by dg.

Proposition 5.4 1) The group PGO™(n) acts on o(n) through inner automorphisms and,
for any b € PGO™(n), B € S3, s € o(n), we have B(b)ds(s) = dg(bs).

2) The group PGO™(n) x Ss acts on o(n) through the formula (b,3)(s) = bds(s) and
Autp(o(n)) = PGO*(n) x S;.

Proof Claim 1) and the first part of 2) follow from (5.3). The last claim of 2) is for example
in [J].
0J

Proposition 5.5 The differential of the action of Sz on PGO™(n) in (5.2) is the action of
Ss defined on o(n).

Proof We first recall the definition of the differential. Denote by Fle] the F-algebra of
dual numbers, i.e., Fle] = F - 1@ F - with multiplication given by €2 = 0. Let x: Fle] — F,

e — 0, be the augmentation map. Let G be an algebraic group. The kernel of the induced
map G(F[e]) G, G(F) is the Lie algebra Lie(G) of G. If G C GL,(F), Lie(G) = {a €

M,(F) | 1+ aec € G(F[e])}. Any homomorphism of algebraic groups f: G — H induces a
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commutative diagram

— H(F[e])
G(H)l H(r)
G(F) I H(F)
and hence defines an F-linear map df: Lie(G) — Lie(H) which is the differential of f.

We only check that the differential of p in (11) is d, as defined in (3.4). Let [g] =
[1+4 ag] € PGO" (n ® FI[e]), so that [a] € Lie(PGO™(n)) = Lie(GO™(n))/F. By definition
of the differential we have [5(g)] = [1 + d5(a)e] and by definition of triality

m(p(9))p(9)(w *y) = g(x) * p*(9)(y)-
Modulo scalars we have
(1 + ds(@)e) @+ ) = (14 a2)(a) * (1 + da(a)e) ()
or
dy(a)(x xy) = a(z) %y + x + dx(a)(y)
hence d; = d, by (3.2) (local triality).

6 Orthogonal Involutions

Let GO, (F) = {a € GL,(F) | aa® € F*} denote the group of similitudes of the n-dimensional
identity quadratic form < 1,...,1 >. The element m(a) = aa' is the multiplier of the
similitude a. Elements of GO, (F") act on (M, (F),t) through inner automorphisms, a(z) =
ara™, a € GO, (F), and

Autp (M, (F),t) = GO,(F)/F* = PGO,(F). (12)

We assume that n = 2[ is even. Proper similitudes a satisfy det(a) = m(a)’ and form a
subgroup GOJ,(F) of GOy (F). Going modulo the center we get the group of classes of
similitudes PGOg/(F) and the group PGOS,(F) of classes of proper similitudes.

The group PGOJ,(F') can also be described as a group of automorphisms; let

Skewq (F) = {X € My(F) | X' = —-X}
be the set of skew-symmetric (2] x 2[)-matrices. The pfaffian
pf: Skewy(F) — F

is a homogeneous polynomial function of degree [ such that pf(X)? = det(X); further,
pf(AX AY) = det(A) pf(X) for A € My(F) and X € Skewy(F). For [A] € PGOy(F) we
have pf(AX A™') = pf(X) if and only if and [A] € PGOZ(F). Thus

Autp (My(F),t,pf) = GOg,(F)/F* = PGOZ(F). (13)
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Let F be a separable closure of F and let I' = Gal(ﬁ /F') be the absolute Galois group of
F. Let H'(F,G) = H'(T, G(ﬁ)) be the pointed set of Galois cohomology of I' with values
in G. The set H'(F,G) classifies G-torsors (principal homogeneous spaces for G over F).
Assume that G is the automorphism group of some tensor w over F'; then H'(F, Q) classifies
isomorphism classes of F /F-forms of w. Let (A, o) be a central simple algebra of degree n
over I' with an F-linear involution o. We say that o is of orthogonal type if we have an
isomorphism (A,0) ® F ~ (M,(F),t) over a separable closure F' of F.. We call such an
isomorphism a standard splitting of (A,o). In view of (12) the pointed set H'(F,PGO,)
classifies central simple F-algebras (A, o) of degree n with orthogonal involutions, the point
being the class of (M, (F),t).

We give a similar description of H!(F,PGOJ,). For any algebra A with involution o, let

Skew(A,0) ={rx € A| o(z) = —z}
be the set of skew elements.

Proposition 6.1 The pointed set H'(F,PGO3,) classifies triples (A, o, Pfrd,), where A is
central simple over F of degree 21, o is an involution of orthogonal type on A and Pfrd 4
is a polynomial function of degree | on Skew (A, o) such that Pfrd4(z)? = Nrda(x) for z €
Skew(A, o). The point is the class of the triple (MQZ(F),t,pf). Further, the map Pfrdy
satisfies Pfrd4(axo(a)) = Nrda(a) Pfrda(z) for x € Skew(A, o) and a € A.

Proof Let (as)ser, as € PGO;(?), be a cocycle with values in PGOj,. Its image as a
cocycle with values in PGOy; defines the central simple algebra

A={z € My(F) | ass(x)a;" =z for all s € T'}

with an orthogonal involution o which is the restriction of the transpose ¢. We claim that
the pfaffian on Skewq;(F') restricts to a function Pfrd4: Skew(A, o) — F. It suffices to check
that s(pf(z)) = pf(z) for x € Skew(A,0) and s € . We have

pf(z) = pf(ass(z)a;t) = pf(ass(x)alm(a,)™) (14)

— pf(s(x)) det(a)m(as) ™" = pf(s(x))

since det(a,) = m(a,)! for a, € PGOJ,(F). The claim then follows from pf(s(z)) = s(pf(x)).
The given properties of the polynomial map Pfrd, follow from the corresponding properties
of the pfaffian.

OJ

We call a map Pfrd4 as in (6.1) a reduced pfaffian. We have an exact sequence of I'-groups

1 —— PGOL(F) —— PGOu(F) — 1

where, for a similitude a with multiplier m(a), d([a]) = m(a)~'det(a) € po. The sequence
induces an exact sequence of pointed sets in Galois cohomology:

i HY(F,PGO}) —=— HY(F,PGOy) —=— HY(F, )

The image under i, of the class of the triple (A, o, Pfrd4) is the class of the pair (A,o0). We
describe the map d,:
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Proposition 6.2 If H'(F, uy) is identified with F*/F*2, then d.([A, o]) is the square class
Nrda(x)] € F*/F*? of any skew-symmetric unit of A.

Proof We recall the identification of H'(F,u,) with F*/F*2: any cocycle (bs)ser €

ZY(F, ji2) can be written as b, = s(\/g)\/gil for b € F* and vb € F*. Then the square class
[b] € F*/F*2 corresponds to the cocycle (by). Let (ay)ser, as € PGOy(F), be a cocycle
with values in PGOy. By (14) we have d,([as]) = m(a,) " det(as) = s(pf(z)) pf(z)~* for
any skew-symmetric unit x € A. Thus d,([A, o]) = [pf(z)?] = [Nrda(z)], as claimed.

U

Remark 6.3 The square class [Nrd4(z)] € F*/F*? which, in view of (6.2), is independent
of the choice of the skew-symmetric unit z, is the discriminant disc(o) of the involution o
(see [KPS]). The image of the map s, in H'(F, PGOy) consists of classes [(A, o)] such that o
has trivial discriminant. Given a class [(A, ¢)] in H'(F, PGOy) with disc(c) = 1, there could
be two possible choices of lifts in H!(F, PGOJ,), namely [(A, o, + Pfrdy)].

We briefly recall how the discriminant is related with the Clifford algebra and refer to
[KMRT] for details. The map

C: PGOy(F) — Autz(Co(21), 1)

defined in (2) induces a map in Galois cohomology. The image C(&) of a cocycle & corre-
sponding to an algebra with orthogonal involution (A, o) defines an algebra C(A, o) with
an involution ¢. The algebra C(A, o) is called the Clifford algebra of (A,o). Any iso-
morphism ¢: (A,04) — (A’,04) of algebras with orthogonal involutions induces an iso-
morphism C(¢) of the corresponding Clifford algebras. The algebra C'(A, o) has a similar
structure as the even Clifford algebra of a quadratic space of even dimension (see (2.1)); its
center Z(A, o) is quadratic étale over F' and C(A, o) is central separable over Z(A, o). If
(A,0) = (Endp(V),0,), then (C(A,0),0) is canonically isomorphic to (Co(V, q), 70).
There is an embedding

na: Skew(A, o) — Skew(C(4,0),0) (15)
which is the map
ad™" :o(q) = [V, V] € Co(V, q)

if (A,0) = (Endp(V),0y).

The center Z(A, o) of C(A, o) has a generator z such that 22 = d € F*. If (4,0) =
(Endp(V),0,), we have 22 = (—1)" det(b,) where det(b,) is the determinant of the matrix
b of b, with respect to some basis of V. The square class disc(q) = [det(b,)] € F*/F*? =
HY(F, jup), is the (unsigned) discriminant of q. The isomorphism class of the center of
Co(V,q) is determined uniquely by disc(g). The involution o, is given by z +— bz'b~! for
x € My /(F') and it follows from (6.2) that disc(o,) = [det(b)] = disc(q)]. For (A, o) arbitrary
we similarly write 22 = (—1)'d and the square class [d] € F*/F*? of d is the discriminant
disc(o) of o as defined in (6.3) (see [KMRT, (8.25)]").

LOur definition of the discriminant of an orthogonal involution is not consistent with the definition given

in [KMRT]. There it is called the determinant and the discriminant in [KMRT] is the class of (—1)!-d
modulo squares.
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From now on we assume that A is of degree a multiple of 4, so that [ as above is even.
The center Z(A, o) is generated by an element z such that z*> = d with [d] = disc(o). If
disc(o) = 1, then Z(A,0) ~ F x F. The choice of an isomorphism v: Z(A,0) = F x F
corresponds to a choice of a sign of Pfrd4. Thus:

Corollary 6.4 Let n be a multiple of 4. The pointed set H'(F,PGO}) classifies triples
(A, 0,7) where v is an F-algebra isomorphism v: Z(A,0) = F x F.

7 'Trialitarian algebras

Let (A,04) be a central simple algebra of degree 8 over F', with an orthogonal involution o 4
of discriminant 1. With the notation of (6.4), the choice of an isomorphism v: Z(A4,0.) —
F' x F' leads to a decomposition

(C(A,O’A),g) ~ (B,O‘B) X (C,Uc)

The algebras B and C' are of degree 8 and the involutions op, oo are of orthogonal type
(see (2.1)). Thus, given a cocycle & € H'(F,PGO{), there exist algebras of degree 8
((A,04),(B,05),(C,0c)) with orthogonal involutions together with an isomorphism

aa: (C(A,04),0) = (B,og) x (C,00). (16)

If (A,0) = (Mg(F),t), then (B,op) ~ (Ms(F),t) ~ (C,0c) and formula (4) gives an
explicit isomorphism apgr) = . The triple (Mg(F) t, ) corresponds to the point of
H'(F,PGOY).

Lemma 7.1 The trialitarian action on PGO;{(?) s compatible with the action of the Galois
group T' = Gal(F/F) and leads to an action of Sz on H'(F,PGOY).

Proof Let a € PGO;(?) = Autz (Mg(f’),t, pf). The action of I on the group PGO;(?)
is given by s(a) = sas™! for s € I'. The trialitarian action is defined as (p(a),p*(a)) =
(g ® 1z) o C(a) o (g ® 15)7* (see (11)). Since g is defined over F and the functor
C commutes with the action of I', we have s(p(a)) = p(s(a)). One can also check that
ST = Ts.

0

Our next aim is to describe this action on H'(F, PGOj ), in terms of the classified objects.
Let 34: A® F = Mg(F) be a standard splitting of (A, o4, Pfrd,) and let ay, = f40 (1 ®
s)o B, os7t € PGOZ (F) be the corresponding cocycle. Let

B = {ye My(F)|p(a)(sy) =y, s €T} and
C = {z€M(F)|7a,)(sz) =2, seT}

be the central simple algebras defined by the cocycles p(a,), resp. p*(as). The involutions

o, resp. oc are the restrictions of the transpose to B, resp. C' and the pfaffians Pfrdp and
Pfrdc are the restrictions of the usual pfaffian pf. The two splittings Sp: B® F = Mg(F),
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resp. fo: C ® F = Mg(F) are given by multiplication in Ms(F). The Clifford algebra of
(A o) is

C(A,0) ={ue CyB)® F | Clas)(su) =u, s €T}
Lemma 7.2 The restriction of op @ 15: Cp(8) ® F = My(F) x Mg(F) to C(A, o) induces
an isomorphism aa: (C(A,04),0) = (B,op) x (C,0¢) such that the diagram

Q’A®1;—~

C(A,o4)® F BRFxC®F

C(ﬁA)l l(ﬂBﬁc)

ozo®1ﬁ ~ ~

CoB) @ F ——E Mg(F) x Ms(F)
commutes.
Proof Let (y,z) = ag(z) for z € C(A,04). We have to check that (p(as), p*(as))(sy, s2) =

(y,z) forall s € I,
Denote ag ® 15 = a; we have, since ags = sy and C(as)sr = x,

(Plas), 7(a0))(53,57) = aoClas)ag (s, 52)
= aoC(as)aals(ao(:c))
= opC(as)sx = ap(x) = (y, 2).

O

Repeating the same procedure for (B, o), resp. (C,o0¢) in (7.2) we get isomorphisms

ag: (C(B,op),0) = (C,00) % (A,04) (17)
7R (0(0700)7g) - (Aao-A) X (BﬂUB)'
In particular the p-action on H'(F,PGOg) corresponds to the permutation (A, B, C') —
(B, C, A). On can similarly check that 7 switches B and C.
The split exact sequence

1 —— PGO{ (F) —— PGO{(F) x S Sy 1

induces an exact sequence of pointed sets in Galois cohomology
—— HYF,PGOJ) —— HY(F,PGOg xS3) —— H(F,S3). (18)

The set H(F,Ss) classifies cubic étale F-algebras L, i.e., F-algebras L with L ® F o~
F x F x F (see [KMRT]). The set H'(F,PGO}) classifies triples (A, B,C) as in (7.2).
Following [KMRT], we introduce algebraic objects which are classified by H*(F, PGOg xS3).

The triple (A, B, C') gives rise to an F' x F' x F-algebra T' = A x B x C' with an involution
or = (04,08,0¢). The triple (a4, ap, a¢) is an F' X F x F-isomorphism of C(T, or) with
the (F x F' x F) x (F x F)-algebra (B x C) x (C' x A) x (A x B); we write the cubic étale
algebra L = F x F' x F as a column (F, F, F')" and its discriminant A = F' X F as a row
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(F, F), so that L ® A is represented by (3 x 2)-matrices: L ® A = (? ?) and (a4, ag, ac)

F F

has values in (g i) Let (aly,a?), resp. (ak,a%), (ab,a?) be the two components of a4,
A B

resp. ap, ac. We have T @ A = (g) ®(FxF)= (% %)’ let

ay o«
o = a}q a
ah o«

):C(T, or) = T ® A. (19)

BN QRN

The map ag is F-linear, but not L-linear. To restore L-linearity we have to twist the action
of LA = (? ?) on (g ﬁ) through an automorphism of L ® A; in fact L® A is a S3-Galois

F F c C
F-algebra with the action of S3 given as

_fa1 a2 c1  bs _fa1 a2 as a1
p by bo — al () and | b1 bo — bo b1 | . (20)
c1  C2 b1  as ¢l Co co  C1

For any L ® A-module V with L and A as above, let V' be the F-module V with the action
of L ® A twisted through p, ie., -z =p({)zforf e LeAandz €T. For T =Ax BxC
and A = F' x F, the map (19) viewed as a map

ar = (ai ai)  O(T,or) — (T @A) (21)

1 2
Ap Oy

is L-linear. For (A,0) = (Ms(F),t), we have (B,0) = (C,0) = (Ms(F),t), T = Ms(F) x
Mg (F) x Mg(F') and (aa, ap, ac) = (ag, ag, ap). We denote the corresponding isomorphism
ar by a; it is uniquely determined by:
x dp(2)  dp2(y)
doad™? (y) = (dp(:c) dPZ(Z)) (22)
z do(y)  dp2(x)
for (x,y,z) € 0(8) x 0(8) x 0(8). Let
M(F) = My(F) x Mg(F) x Myg(F) = My(F x F x F)

viewed a a central separable algebra over F' x F' x F. Let t be the involution on M(F)which
is transpose on each factor. We call the data

(M(F),F x F x F,t, @)

the standard trialitarian algebra over F. We also abbreviate the data by M (F).
Let ¢ be an F-automorphism of (M (F), t); ¢ restricts to an automorphism ~ of the center
Fx FxF|ie., ¢is vy-semilinear. We claim that ¢ extends to a y-semilinear automorphism

C(¢) of the Clifford algebra C' (M (F), t). More generally we have:

Lemma 7.3 Let L be an étale F-algebra and let (V,q) be a quadratic space over L.

1) Let v be an F-automorphism of L and let f be a y-semilinear similitude of (V,q), i.e.
q(fv) = m(f)'y(q(v)) forv eV, m(f) € L*. Then f extends to a y-semilinear automor-
phism of Co(V, q).

2) Any F-automorphism ¢ of (EndL(V), aq) restricts to an automorphism vy of the center L
and is of the form ¢(z) = fxf~t for some y-semilinear similitude f of V. Further it induces
a vy-semilinear automorphism C(¢) of C'(End.(V),0,)) = Co(V, q).
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Proof The proof of 1) is similar to the proof of (2.5) (see also [W]). We prove claim 2);
the automorphism ¢ induces an automorphism of Endg(V'), hence is of the form Int(f) with
f € GL(V). The fact that ¢ commutes with og implies that f is a semilinear similitude.

UJ

Let ¢ be an F-algebra automorphism of M (F'). Its restriction 7 to the center F' x F' x F’
of M(F') induces an automorphism A(¢) of the discriminant A = F' x F. We say that ¢ is
an automorphism of the standard trialitarian algebra M (F') if a o C(¢) = (¢ ® A(¢)) o a,
i.e., the following diagram is commutative:

C(qs)l lqﬁ@A(aﬁ) (23)
C(M(F),t) —2— A(M(F)® A)
Proposition 7.4 We have Autp(M(F)) ~ PGOg (F) x Ss.

Proof Since any automorphism of M (F') restricts to an automorphism of the center F' x
F x F of M(F), there exists a homomorphism 6: Autp(M(F)) — Autp(F x F x F) = S;.
We show that 6 is surjective by exhibiting a section s. Let py be the 3-cycle (123), so that
po actson F'x F'x F as po(z,y,z) = (z,x,y), and let 7 the transposition (2 3) € Ss, so that
mo(z,y,2) = (x, z,y). We define for U, V', and W € Mg(F): s(po)(U,V,W) = (W,U, V) and
s(mo) (U, V,W) = (PUP, PW P, PVP)), where P is the matrix of the Cayley conjugation 7
with respect to an orthogonal basis as in Section 5. Since s(pg)s(m) = s(mo)s(p2), s is a
section. An automorphism ¢ belonging to the kernel of # restricts to identity on the center
of M(F); it is (F x F x F)-linear, hence of the form (a, b, ¢), for a, b and ¢ € PGO{Z (F).
Further it induces the identity on A. It then follows from the commutativity of (23) that

Co(8) —— Ms(F) x Mg(F)

C(a) l l (b,¢)

Co(8) — Mg(F) x Mg(F)

commutes. By (11) we have that b = p(a), ¢ = p*(a) and the map ¢ — a gives an iso-

morphism of the kernel of § with PGOZ (F). Thus Autp(M(F)) ~ PGO{ %53, as claimed.

O

Remark 7.5 An explicit describtion of the action of the semidirect product PGOg (F') x S3
follows from the proof of (7.4): let (b,3) € PGOZ (F) x S3 and let (U,V,W) € M(F) =
Mg(F)x Mg(F)x Mg(F). Let b = [B], p(b) = [By] and p?(b) = [Bs] for B, By, B, € GOF (F).
We have

(b,1)(U,V,W) = (BUB™,BVB;', BsWB;"),

(17 pO)(U> V7 W) (VV7 U, V)
(1, 70) (U, V, W) (PUP, PW P, PV P)

for pg, mp and P as above.
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Let L be a cubic étale F-algebra. To L is associated functionally the étale quadratic algebra
A = A(L) which is the discriminant algebra of L ([KMRT, p-290)] Let sgn : S3 — s be
the signature map and let d : H'(F, S3) — H'(F, uy) ~ F*/F* be the induced map. Let
d(L) = [D], D € F*. Then, A ~ F[x]/(x* — D). The algebra L is cyclic if and only if
A ~ F x F. For any cyclic F-algebra L, there exists on F-algebra automorphism p of L
of order 3. The algebra L ® A over A is cyclic and let p be a generator of L ® A over A.
For any L module V, we denote by AV ® A) the module V' ® A with L ® A-action twisted
through p.

Let T" be a central separable L-algebra, with an orthogonal involution or. We say that
T is pre-trialitarian if there exists an L-isomorphism

ar: (C(T,07),0) = (T, 01) @F A). (24)

The standard trialitarian algebra T = M(F) is pre-trialitarian with ap = a.

An isomorphism of pre-trialitarian algebras ¥ : (T, L,or,ar) — (T',L, 00, ar) is a
pair (¢ : T — T',¢: L — L) of F-isomorphisms where 1) is ¢-semilinear, such that the
diagram

C(T,or) —— /T ®A(L))
c(zp)l lwm(qﬁ) (25)
C(T,or) —=— /T" @ A(L'))

commutes. For a field extension F'/F and any pre-trialitarian F-algebra T, T" = T ®@p F’
is pre-trialitarian over F’ in an obvious way. We say that a pre-trialitarian F-algebra T is
trialitarian over F if there exists a field extension F”/F and an isomorphism T ®p F' —
M (F"), where M (F") is the standard trialitarian algebra over F".

The algebra A x B x C with A, B and C as in (7.2) is trialitarian over F, with L =
F x F x F and ar as defined in (21):

Proposition 7.6 Trialitarian algebras over a field F are classified by the pointed set
HY(F,PGOg xS3), with the class of the standard trialitarian algebra M(F) as the point.
The map H'(F,PGOY) — H'(F,PGO¢ xS3) of (18) associates to a central simple F -
algebra (A,o4) of degree 8, with orthogonal involution o4 with discriminant 1, the data
(A XBxC FxFxF ((o4,0p,00), (aA,aB,aC)) as in (7.2).

Let T'= (T, L,or, ar) be a trialitarian algebra and let
nr : Skew(T,o7) — Skew (C(T, 07),0)

be the canonical embedding (15). Let Zr be the center of C(T,07). The isomorphism
ar: C(T,or) = (T @ A) restricts to an F-isomorphism o’: Zp — L ® A and we have an
isomorphism 1®@a’ ™" of Skew (T, 07)@p A = Skew (T, 07) @1, (L A) with Skew (T, 07) @1, Zr.
In view of (2.4) we have Skew (C(T,07),0) = nr(Skew (T, 07)) ®, Zr so that aro (nr®1z,)
is an isomorphism Skew (T, o7) ®p Zr — p(SkeW(T, or) Qp A). The composition of these
two isomorphisms is an isomorphism

o, Skew(T,07) @p A = *(Skew (T, 0r) ®p A)
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which, in turn, can be viewed as a p-semilinear automorphism of the (L ® A)-Lie algebra
Skew((T, or)Qp A). Let ay = lgkew(1,07) @ ¢, Where ¢ is conjugation on the quadratic algebra

Proposition 7.7 The pair of automorphisms o, and o, constitutes a descent datum on the
Lie algebra Skew(T,07) @p A from L ® A to F with respect to the Galois group Ss3. The
fized points of the Ss-action

o(T) = {z € Skew(T,0r) @r A | a,(x) =2 for all v € S5}

is a Lie algebra (of type Dy) associated with the triality T. For the standard trialitarian
algebra T = M(F), o(T) = os.

Proof The fact that o, and o, generate a Ss-semilinear action needs to be checked only
in the standard case, by going over to a standard splitting. For the standard trialitarian
algebra T' = Mg(F') x Mg(F') x Mg(F') we fix an isomorphism A = F' x F' and, by (20), for
Tiy Yir2i € Og(F)

1 T2 dp(21)  dy2(y2) 1 T T2 w1
Oplyr y2 | = [do(z1) dp2(22) and or (v w|=(wr wu].
z1 22 dp(y1)  dy2(w2) 21 22 z2 21
The first claim then follows from this explicit description of a, and a,. We leave the last
claim as an exercise.

O

Remark 7.8 If L/F is cubic cyclic the discriminant A is split, P(L ® A) = L x 7L and
we have

ar: (C(T,o07),0) = AT, 0) x AT, o).

We say in this case that 1" is cyclic trialitarian. Cyclic trialitarian algebras are classified by
the pointed set H'(F,PGO{ x1Aj3). The restriction of ar to Skew (T, o7) is (a,, a2) and we
get a Galois descent datum for Skew (7, o7) from L to F.

8 (Generic torsors

Let H be a closed subgroup of GL,,. We have an exact sequence of pointed sets
1 — H(F) — GL,(F) — (GL, /H)(F) & H'(F, H) — H'(F,GL,) (26)

(see for example [KMRT]) and H'(F,GL,) = 0 by Hilbert 90. We recall that the set
H'(F, H) classifies H-torsors. Let F(GL, /H) be the function field of the homogeneous
variety (GLn /H ) which is defined over F'. Let n be the generic point of GL,, /H. In view of
the exact sequence (26) (over F(GL, /H)), the element n € GL,, /H (F(GL, /H)) gives rise
to an H-torsor 0(n) = ¢ € H'(F(GL, /H), H), called the generic H-torsor. Any H-torsor is
a specialization of &: more precisely, let F' C F’ be a field extension and let z € H'(F’, H).
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There exists a point ¢ of the variety GL,, /H and an embedding i; : F'({) — F”’ such that
x =14} (6(C)), whereip : H'(F(¢), H) — H*(F’, H) is the induced map in Galois cohomology.
Let H = PGO'(8) x S5 and H — GL, be an embedding over F. The corresponding

generic H-torsor & defines a trialitarian algebra Ty = (T¢, L¢, 0¢, a¢) over the function field
F(GL, /H).

Proposition 8.1 The algebra T¢ is a division algebra.

Proof Let Z be the center of T;. We claim that Z is a field. We may choose a specialization
Fy of F(GL, /H) with a separable cubic field extension M/Fy. There is a (quasi-split)
trialitarian algebra T with center M (see for example [KMRT, Example (43.7)].) Specializing
T to T specializes the center Z of T' to M. Thus Z has to be a field. Suppose that T is
not a division algebra, say Ty = M;(A) for some central simple algebra A over Z. This
implies (by specialization) that for any cubic étale algebra M,/ Fy over any field Fy which
contains F', any trialitarian Fy-algebra with center My has to be of the form My(Ap) for some
algebra Ay over My, which is a specialization of A. Let (D, o) be a central division algebra
of degree 8 over some field extension F; of F', with an orthogonal involution o, for example
a tensor product of three generic quaternion algebras. Let A be the discriminant of o (as a
quadratic extension of F}). In view of [KMRT, Proposition (43.15)], (D, o) x (C(D,0),0)
is a trialitarian algebra over Fy x A. Since D is a division algebra, (D, o) x (C(D,0),0) is
not of the form Ms(Ap). This is a contradiction. Hence T¢ has to be a division algebra.

OJ

9 Generic trialitarian division algebras

The aim of this section is to construct explicitly a generic trialitarian algebra. Our construc-
tion is inspired by and closely follows the presentation of generic division algebra given in
Saltman [S2].

Let F' be a field and let r be a positive integer. Consider the polynomial ring S =
Flxije, Yigr, zie | 1 < 1,7 <81 <k <r]. In Mg(S) we have the generic matrices Xy, Y}, and
Zy, whose entries are given by (Xy)ij = Zijk, (Yr)ij = Yijr and (Zy)i; = 2ijk. Let U* be the
transpose of the matrix U and let U=U—Ut. We recall (Section 4) that by triality, we
can associate to any skew-symmetric matrix V', skew-symmetric matrices d,(V') and d,2(V).
Let D = DDy D3 where

Dy = pf(Xi+dy(Z) +dp(V2)),
Dy = pf(Y1+4d, X1 +d,e (21)), (27)
Dy = pt(Z+d,(V)) + de(X))).

Let R(F,r) be the F-subalgebra of M (S) = Ms(S) x Mg(S) x Mg(S) generated by all triples

X X} dp(Zk) + d (V) (d,(Z) = dpe (Vi) D
Vel (Y], |d(X0)+de(Z) | and | (d,(X0)—dpe(Ze))D]. (28
Z Zi dp(Ve) + d,p (Xi) (do(Ye) — dy2(X3)) D
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Let (T, L,or,ar) be a trialitarian algebra over a field extension F of F. An F-algebra
homomorphism ¢: R(F,r) — T is called trialitarian if, for a standard splitting ¢: T®gE" —
M(FE') of the trialitarian algebra T', there exists an F-algebra homomorphism v: S — E’
such that M(v): M(S) — M(E") restricts to 1.

Proposition 9.1 Let (T, L,or, ar) be a trialitarian algebra over a field extension E of F.
Let ay, as, ..., a, be elements of T'. There exists a unique trialitarian F-algebra homomor-
phism : R(F,r) — T such that w((Xk,Yk, Zk)) =ay fork=1,...,r

Proof We assume that the discriminant A of the cubic extension L is a field (and leave the
split case as an exercise). Let E C A C E' be a field extension such that (7, L, o, ar) @g E’
is isomorphic to the standard trialitarian algebra over E’, i.e., there is an isomorphism of
trialitarian algebras (T, L, o7, ar) @g E' = M(E'). We use the isomorphism to identify T
with a subalgebra of M(E"). Let

ar® 1= (A}, AL, A7) € M(E') = Ms(E') x Ms(E") x Ms(E')

where (Ay)i; = agjy, 6 E', e =1,2, 3 Define ¢: S — E' by d(zijr) = a, O(Yir) =
aiy and @(zgx) = ajy,. Then ¢ 1nduces a homomorphism of algebras M(¢) : M(S) —
M(E'), where M(¢)((s;)) = (o(s s¢;)) for any triple of matrices (sf;) € Mg(S). Let ¢ be
the restriction of M(¢) to R(F,r). We claim that ¢(R(F,r))C T and that 1 is uniquely
determined by the condition w((Xk,Yk,Zk)) = ap for k = 1,... ,r. We check that the
images under ¢ of the generators of R(F,r) are in T" and are determmed by the a;’s. Since
t restricts to op, (XL, Y, Z8) = or(ap) € T and ¥(Xy, Ye, Zi) = G = ax — or(ay) € T.

Let ¢ be the conjugation map of A. Since A C E’' we have canonical isomorphisms
AQpE S E xE, 2@y~ (zy,.(z)y), z € Aand y € F', and

TOA) @ E STRpE xTQpE, (a®@z)®1+ (az,al(z))

Through this canonical isomorphism we have:

N A i) , ,
(aronr)(ar) ®p g |dp(A)) ded)| €T R B' X T Qp B
dp(AR)  dy2(Ay)

Further, ar o nr(a,) € ?(Skew(T,0) ® A). We next compute M (¢)(Dy, Do, D3) and
#(D). Let Trrgoa/r: T ®p A — T be the map induced by the trace map A — E and let
Nrga/a: L ®p A — A be induced by the norm map. Since ar restricts to an isomorphisms
of centers Zr — L@p A, Lop A ~ L[X]/(X?—d) with [d] = disc(or) € L*/L*2. Tt follows
that or ®1 1pg,a is an involution of T ®y (L®g A) = T @ A with trivial discriminant. By
(6.1) there exists a reduced pfaffian Pfrdpg a: Skew (T ®@p A, 070 ® 1o) — L®g A. We have

dP(ZIc) +d,2 (Vi)
(0
dp(Yi) + d 2 (Xp)

dp(Xp) +d 2(zk)) = TYT@)EA/T((@T o nT)(&k)) eT.

Further M (¢)(Dy, Dy, D3) = Pfrdp (&1 + TrT@,EA/T((aT o nT)(ELl))) € L®A and
(b(D) = NL®A/A (PfrdT(ng -+ TrT@A/T(<aT 0] nT)(&l))) € A.
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Let D' = ¢(D); since ¢(D?) = Niga,/a (NrdT (dl + TrT®A/T((aT o ?7T)(5L1))) € F, it follows
that «(D") = —D’. We have

_ dp(AD'  —d 2(A2)D’
((ar onr)(@) @ 1) D' = | dp(abyp —da(iip |,
dp(A2)D'  —d,2(A})D’

so that

(dp(Zk) — d,2 (Yg)) D 5 ,
| (dp(X0) ~d2(Z) D | = Tropasr((or o nr)(ar) ® 1oD') € T.
(dp(Yi) — d2 (X)) D

Hence, as claimed, the images of the generators of R(F,r) are in T" and are determined by
the a;’s.
O

Let E C E’' be a field extension and let
Vi (E') = Homp (R(F,r), T @5 E')

be the set of all trialitarian F-algebra homomorphisms from R(F,r) to T®gE'. Let Ry p(T")
be the affine space 7" viewed as a variety over E. In view of (9.1) we have:

Corollary 9.2 Vy(E') can be identified with the set of E'-points of Ry /g(T").

Let 0 # s € R(F,r). The set V3 ,(E') of all trialitarian F-algebra homomorphisms ¢ :
R(F,r) — T such that ¢(s) # 0 is the set of E'-points of an open subvariety Vr of V. If
FE’ is infinite, Vi 4(E’) is nonempty.

Proposition 9.3 The ring R(F,r) is a noncommutative domain.

Proof Let s, t be nonzero elements of R(F,r). Choose (T, L, o7, ar) over some field £ D F
such that 7" is a division algebra. Such algebras exist in view of (8.1). Since V7 is irreducible,
Vrs N Vry is an open subvariety of Vi and, hence, has a E-rational point ¢: R(F,r) — T.
Thus ¢(s) and ¢(t) are not zero and, since 7' is a division algebra ¢(st) = ¢(s)p(t) # 0, so
that st # 0.

O

The center Z(F,r) of R(F,r) is a commutative domain (by (9.3)). Let L(F,r) be its field
of fractions and let UT'(F,r) be the ring obtained from R(F,r) by inverting all the nonzero
elements of Z(F,r). Then UT(F,r) is a (noncommutative) domain with center L(F,r).

Theorem 9.4 The ring UT(F,r) is a division ring. Further it is of degree 8 over its center
L(F,r).

Proof Since R(F,r) C M(S) = Mg(S x S x S) and since R(F,r) is a domain, R(F,r) is
a prime Pl-ring. By [R1, Theorem 6.1.30] UT'(F,r) is central simple finite dimensional over
L(F,r), hence is a central division algebra over L(F,r). To check that UT(F,r) is of degree
8 over L(F,r), we need some intermediate steps.
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Proposition 9.5 1) Assume that r > 3-8%. There exists a basis of M(K) over K consisting
of triples (X, Yi, Zx) € R(F,r). In particular we have R(F,r)K = M(K).

2) Let Skew(K') = Skewg(K) x Skewg(K) x Skewg(K) C M(K) be the Lie algebra of skew-
symmetric elements in M(K). Assume that r > 3-82. There is a basis of Skew(K) over K
consisting of triples ()f(vk, Y, Z) € R(F,r).

Proof For the first claim, let {e;;}, 1 <1i,j <8, be the standard basis of Mg(K), so that
((€:7,0,0), (0,€;5,0), (0,0,€e;)) is a K-basis of M(K). We have in M (K):

XImYkaZk sz]k 61]70 O +Zywk O 62]7 +Zzz]k 0 O ez]

for kK = 1,...,r. The matrix of the coefficients has generic entries, hence, if » > 3 - 82, the
determinant of the coefficient matrix of the first 3 - 82 equations is not zero in K so that the
elements {(e;;,0,0), (0,e;5,0), (0,0,€e;;)} can be expressed as K-linear combinations of the
triples (Xg, Yz, Zx), k < 3-8% A similar argument gives the second claim.

O

Remark 9.6 The condition 7 > 3 - 8% in (9.5) is not the best possible. Since X and X'
generate Mg(K) as a K-algebra, three triples (X, Yy, Zx) and their transposes generate
M(K) as a K-algebra. Hence r > 3 would suffice.

Corollary 9.7 1) Z(F,r) C S x S x S.
2) If (T, L,or,ar) is trialitarian and 1. R(F,r) — T is an F-algebra homomorphism, then
(Z(F,r)) C L.

Proof By (9.5) R(F,r) generates M (K) over K, hence R(F,r)K = M(K). Since Z(F,r)
is central in M(K), Z(F,r) is contained in K x K x K. The first claim then follows from
MOON(KxKxK)=SxS8xS5. Let ¢ : R(F,r) — T be an F-algebra homomorphism. Let
T ®p E' = M(E') of (T, L,or,ar) be a standard splitting. We identify (T, L, op, ar) @g
E' with its image in M(E'). Let ¢: R(F,r) — T — M(E') be written as (¢!, 1?2 1?)
with ¢": R(F,r) — Mg(E'), 1 < i < 3, the components of 1. We define ¢: S — E' by
setting ¢(wix) = VN Xk, Ya, Z)ijs (Wise) = ¥ (X, Y, Z1)ij and ¢(2in) = (X, Y, Zi)ij-
The maps ¢ and M (¢)|p(r,) give rise F-algebra homomorphisms R(F,r) — M (E") which
coincide on (Xy, Yy, Zx),1 < k < r. By the uniqueness statement in (9.1), ¢ is the restriction
of M(¢) to R(F,r). Since M(¢)(Sx S xS)C L®gFE', we have (Z(F,r)) C L&gE'. The
second claim then follows from AN (L ®g E') = L.

U

We now prove that UT'(F,r) is of degree 8 over L(F,r). Let S be the set of nonzero
elements of Z(F,r). Since Z(F,r) C S x S x S, L(F,r) is contained in K x K x K.
This inclusion and the inclusion R(F,r) C M(S) induce inclusion UT(F,r) = R(F,r)s —
M(K). We use it to identify the algebra UT'(F,r) with a subalgebra of M (K'). The induced
map UT(F,r) @y (K x K x K) — M(K) is surjective by (9.5). On the other hand
UT(F,7) @y (K x K x K) is central separable over K x K x K, so UT(F,r) ®pry) (I X
K x K) = M(K) and UT(F,r) is of degree 8 over L(F,r).

0J
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10 Invariants of PGOg (F) x S3

Let G the semidirect product PGOg xS as an algebraic group over F. We keep the same
notation as in the previous section. In particular we set S = F'[zyjk, Yijk, 2ijx]). We describe
an action of G(F) on S and on M(S) = Mg(S) x Mg(S) x Mg(S): for b = [B] € PGOg(F),
and U € Mg(S) let b(U) = BUB™L. Let by = p(b), by = p*(b) € PGOZ (F), p as in (10.3).
We define ¢,: S — S by

Ou(@ige) = (071 (Xk)) ;50 Gu(yie) = (b7 (Y)),;, and  dp(zizn) = (b2 (Zi)),- (29)

We have, by definition of ¢b7 M8<¢b)(Xk> = b_1<Xk), M8(¢b)(yk) = b;l(Yk), M8(¢b)(Zk) =
b; ' (Zy). For p=(123) and m = (23) € S3 we set

Op(Tijr) = Zijk Or(Tiji) = (PXiP)y
Gp(Yijr) = wygr  and  Ga(yyr) = (PZrP)y (30)
Gp(2ijk) = Yijk On(zijr) = (PYiP)y;

where P € GOg(F) is the matrix of the conjugation 7 of the standard octonions with respect
to the basis chosen in Section 4.

Lemma 10.1 The actions (29) and (30) combine to define an action g — ¢, of G(F) on
the ring S.

Proof A straightforward computation!
O

The action of G(F') on Mg(S) x Mg(S) x Mg(S) is as follows: let (U, V,W) € Mg(S) x
Mg(S) x Mg(S). For b € PGOg (F) we set

(U, V,IW) =bo M(¢pp) = (b o Mg(¢p)U, by o Ms(¢p)V, bg o Mg(qﬁb)W), (31)

where b, by and by are as in (29). It is easy to check that ¢y(Xg, Y, Zx) = (X&, Y, Zk)-
For p and m € S3 as above we set

V(U VW) = po M(,) = (Ms(6,)(V), Ms(¢,)(W), Ms(¢,)(U)) (32)
and
Ue(U, V. W) =7 0 M(¢) = (PMs(0x)(U) P, PMs(¢x)(W)P, PMs(6-)(V)P)  (33)
Again, it is straightforward to check that:

Lemma 10.2 The actions (31), (32) and (33) combine to give an action g — 1, of G(F)
on Mg(S) X Mg(S) X Mg(S)

We note that the above action of G(F') on M (S) restricts to an action of G(F") on the center
S x S x S. In the next proposition we describe the action of G(F') on the generators of the
F-algebra R(F,r):
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Proposition 10.3 1) The triples (X, Yi, Zx) and (X[, Y, Z}) are invariant under the ac-
tion of G(F') on M(S) = Ms(S) x Mg(S) x Mg(S).

2) For any U € Mg(S), let U=U-—U' Let Az be the alternating group with genera-
tor p and let Go(F) = PGOJ (F) x As. The triple (d, (Zk) d (Xk) d (Yk)) and the triple
(dy2 (Ya), d,e (Zp), d e ()f(\';)) are invariant under the group Go(F') and (dp(Z), dp(}(_;)’ dp(ﬁ))
is mapped to (dpz(fk), dpz(Z), d (5\(;)) under .

3) The triple (dp(Z) +dp2(}7k), dp(j\(;) +dp2(/Z\;), dp(ﬁg)+dpz(§\(;)) is invariant under G(F).
4) The triple (D1, Dy, D3) € S x S x S with

Dy = pt(Xi+d,(Z1) +dp2(V1)),
Dy = pt(Yi+d,(X1)+dp(Z)),
Dy = pf(Z +d,(Y)) +de(X)))

is invariant under Go(F') and changes sign under ..

5) The element D = D1Dy D5 € S is invariant under Go(F) and changes sign under ¢,.
6) The triple ((d,(Zy) — d,2(Y2)) D, (dy(Xy) — dy2(Zi)) D, (d,(Ys) — d,2(X1)) D)

is invariant under G(F).

Proof Claims 1), 2) and 3) are straightforward to verify; we check that D; is invariant
under PGO{ (F): let b = [B] € PGO{ (F); we have BB' = m(B) and det(B) = m(B)*. In
view of (5.3) we have identities bd, = d,p*(b) and bd,> = d,2p(b) and the following “small
miracle” occurs:

¢p(D1) = pf(Ms(¢s)( )(X1) +d o (Ms(¢p( ) (Z1)) + dp2 (Ms(dp0) (Y1)
pf (571X, + d,(7*(b) lzl>+dz< () 7))

pf (b1 X + b~ 1d 21+ b7l YY)

pf (B™1 (X1 +dp (Y1)+d(Zl))B)

= pf(m(B)"'B(X, +d,: (Y1) +d,(Z)))B)

= det(B)m(B)"lDl:Dl

The other verifications are similar. Finally 5) follows from 4) and 6) from 2), 3) and 4).
0J

By (10.3) the algebra R(F r) is fixed elementwise under the action of G(F'). Thus Z(F,r),
L(F,r) and UT(F,r) are all fixed elementwise under this action. We shall show in (10.7)
that M (K)¢") = UT(F,r) and (K x K x K)¢") = L(F,r). We start with:

Lemma 10.4 If a € K then a = f/g with f, g € SCE) . Ifu € M(K)“"), then
u=v/g withv € M(S)¢F) and g € S,

Proof Since M(K) has a basis consisting of elements of R(F,r), it has a G(F)-invariant
basis. Thus the second statement follows from the first. So let a € K¢) and write a = f,/ fo
with fi, fo € S without a common prime divisor. For any g = (b, 3) € G(F), ¢,(a) = a, so
that ¢,(f1)f2 = f194(f2). As fi and fo do not have common divisors, fo divides ¢,4(f2); @4
being linear, we get ¢,4(f2) = A(g) f2 for some A(g) € F'*. Since

¢gh(f2) = Oy ()‘(h)f2) = AMg)A(R) f
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A defines a group homomorphism G(F) — F*. For g € G(F) we have ¢° € PGO{ (F) C
PGLg(F), so that A(g)" = 1 for n = 48 ([S2, Lemma 14.12]). We have a = f/fo = fifs /[
with f2, hence fifs ' fixed under G(F).

UJ

Our next step is to show that, if a € K is invariant under G(F'), then it is also invariant
under G(F”) for any field extension F' C F’. This is achieved by showing that @ is invariant
under a “generic” element of G(F'). Let F[W;;, N, N'] be the polynomial ring in 8 + 2
variables W;;, N and N’. Let W be the generic matrix with entries W;; and let I be the
ideal of F[W;;, N, N'] defined by the relations WW*' = N, det(W) = N* and NN’ = 1.
The ring A = F[W,;, N,N']/I is the coordinate ring of the group PGOJ over F. Let
w;j = W;; + I and (abusing notations) let W € Mg(A) be the matrix (W);; = w;;. The
element g = ([W],~v) € G(A) with « arbitrary in S is the required “generic” element. We
also need the notion of standard trialitarian algebra over a commutative ring. The definition
over a field extends to a definition over any commutative ring R in which 2 is invertible:
M (R) is the separable algebra Mg(R x R x R); since standard octonions are defined over R,

a is defined over R. We further set
PGO,(R) = Autr(M,(R),t) and PGO5,(R) = Autg(Mx(R),t,pf). (34)
Any b € PGOZ(R) induces an automorphism C(b) of the Clifford algebra C'(Mx(R),t);

however, since b, viewed as an automorphism of My (R), needs not to be inner, we cannot
use (2.1) to define C'(b). The automorphism b is inner over some faithfully flat extension R/
of R (see for example [KOJ]). Then C(b® 1g) restricts to an automorphism of C'(My/(R),t)
by uniqueness. The trialitarian action of S3 on PGOgZ (R) can be defined as in (5.2). In
particular we set

aC(b)ag' = (). 7(0)). (35)

The definition of an automorphism of the standard trialitarian algebra over F' extends to
arbitrary commutative rings R as well, and we have Autg(M(R)) = PGOg (R) x S3. For
z € M(R) and g € Autg(M(R)) we write g(z) = gz. For any extension ring n: S C '
and b € PGO; (5) (as defined in (34)), we define ¢}: S — S” and ¢: M(S) — M(S') in a
similar way as in (29) and (31):

QSZ(:EUk) = (b_l(MS(n)(Xk)))ij
i) = (07 (Ms(n)(V2))),, (36)
Oy (zige) = (by' (Ms(n)(Zi))),,

and

V(U V. W) = (b(Ms(6)U), by (Ms (&) V'), ba (Ms(6) W), (37)

where by = p(b), by = p*(b) in PGOg (S') and 7 is as in (35). We similarly define ¢} and 15
for any 3 € S3 (see (32) and (33) for p and 7). Let G(S’) = PGO4 (S’) x S3. As in (10.1)
and (10.2), (36) and (37) extend to maps

¢1: S — S and ¢ =goM(¢?): M(S) — M(S") (38)
for arbitrary g € G(5”).
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Proposition 10.5 Let x € M(S)*") and g = ([W],7) € G(A) generic as above. Then,
under the map ¢7: M(S) — M(S ® A) induced by the canonical embedding n: S — S ® A,
Yi(z) = M(n)(x). If0: S — S"is any homomorphism of commutative rings and g’ € G(S'),
then V9, (x) = M(6)(z).

Proof The proof follows very closely the proof of [S2, Proposition 14.14]. We include it
for the sake of completeness. Suppose ¢j(x) # M(n)(z). Let s € S ® A be a nonzero
entry in the matrix triple ¢(z) — M(n)(r) € M(S ® A). Since s is a nonzero element in
the polynomial ring S ® A = Alzyjk, Yijk, i), there is a nonzero coefficient A € A of the
polynomial s € S ® A. Since F is infinite, there is an F-algebra homomorphism (: A — F
such that ((A\) # 0. Let n': : S® A — S be 1 ® (. Then 1/(s) is not zero since it has a
nonzero coefficient ((A). Let a = ((g) € G(F). We have:

M(n') o M(¢7)( Xk, Yi, Z1) = M (d¢(g)) (X, Y, Zi)
which shows that 7' 0 ¢7 = ¢¢(y) = ¢a. We have M (n)(M(n)(z)) = x since n on = 15 and

M) (43(2) — M(n)()) = 1f(g)M(y 0 63)(z) — 2
= aM(6,)(x) — & = tu(z) — 7 £ 0,

However, since a € G(F) and z € M(S)“F)| we have ,(z) = z, leading to a contradiction.

Suppose that §: S — S’ is any ring homomorphism and let ¢’ € G(S’). We need to show
that % (z) = M(0)(z). Since S’ is contained in a product of local rings, we may assume
without loss of generality that S’ is local. If S’ is local ¢ € PGO4 (9') is the class of an
element GOZ (S”) modulo S and any element of GOZ (S’) is the image of [W] € GOZ (A)
under a suitable specialization A — S’. Hence there is a specialization (: A — S’ such that
C(g) = ¢, where g = ([W],7), for some v € S3. Since ¥ (x) = M(n)(z), where : S — S@A
is as above and since (0 = 0, we have ¢%, (z) = M (¢) (M (0)¥7(x)) = M(COn)(z) = M(0)(x),
as claimed.

0

The notion of trialitarian algebra extends to an arbitrary commutative ring R (where 2
is invertible). First we have an obvious definition of a pre-trialitarian algebra (7', L, or, ar)
over R: L is étale cubic over R, T central separable over L, the Clifford algebra of (T, o7)
is central separable over its center Z(T', o), which is quadratic étale over R. Isomorphisms
of pre-trialitarian algebras are defined as in the field case (see (25)). Let §: R — R’ be a
homomorphism of commutative rings and let 7" be a pre-trialitarian algebra over R. Then
T ®¢ R’ is pre-trialitarian over R'. We say that T is a trialitarian algebra over R if there
exists a faithfully flat morphism #: R — S and an S-isomorphism of T' ®y S with the
standard trialitarian algebra M (S). Let (T, L,or,ar) resp. (1", L', o1/, ar) be trialitarian
over R, resp. R'. A morphism ©: (T, L,or,ar) — (T, L', or, aqr) of trialitarian algebras
is a homomorphism ©: T — T’ of rings which restricts to a homomorphism #: R — R’
such that © induces an isomorphism (7, L, op, ar) @y R — (T", L, o7+, ar) of trialitarian
algebras.

Proposition 10.6 Let E be a commutative F-algebra. Suppose 0;: M(S) — M(FE),i=1,2,
are morphisms of trialitarian algebras such that 61 and 0y are equal on R(F,r). Then 0, and
0y are equal on M(S)F),
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Proof Since any commutative ring embeds in a product of local commutative rings we may
assume that F is local. Let ef;, e =1, 2, 3, and let 1 <, 7 < 8, be the standard matrix units
of M(S) = Mg(S) x Mg(S) x Mg(S); let ff; be the standard units in M(E). By definition
of a morphism, 0,(e5;) = f;, £ = 1, 2, form a complete set of matrix units of M(FE). Let
g1: M(F) — M(FE) be defined as the composite

M(E) —— M(S) @4 E —2— M(E)

where ¢ maps the standard units f; to ef; ® 1 and 6, is induced by 6;. Being the composition
of two morphisms, g; is an automorphism of the trialitarian algebra M (E) with the property
that g1(f5) = ff;;- The elements 0] = g;'0; and 6, = g; '0, satisfy the conditions of the
proposition. If the claim is true for (07, 6)), the claim is also true for (6, 6,), since g; is the
identity on M (S)¥). Thus, replacing 6; by g; '6;, we may assume that ti(e;;) = fi, so
that 6, = M(n;) for some ring homomorphism 7,: S — E. Similarly we have

92(6%) = fQEz] = 9_1( ’Lej)

for some g € G(E) and gy = M(n) for ny: S — E. Let ' = S ®p FE and let ,: 8" — E,
¢ = 1,2 be defined as ny(s®@t) = n(s)t, i.e., n; is the identity on E. We note that M (n;)(a) =
a for any o € M(E). We define 6;: M(S") = M(S)® E — M(E) as 6)(a ® e¢) = 0y(«)e for
e € E. We claim that gf, = M(n}) on M(S’). This is clear on M(S), since g6y = M (1)
on M(S), and is obvious on F, since all the maps are E-linear. Since (Xj, Yy, Zx) € R(F,r)
and M (n;) = 6;, we have

M) (X, Y Zi)) = 01 (X, Ya, Zi)) = 05 (X, Yo, Zi))
= g "M (ny) (Xx, Yi, Zi)).

We have a commutative diagram

M (n)=n5®1 0 (E)

S M(E) = M(S @ E) M(E) = E ® M(E)

1S®gl J{1E®g

M (n5)=nr®1 (k)

S®M(E)=M(S® E) M(E) = E @5 M(E)

It follows that that g~' and M (n}) commute. Now, since 1, ((Xy, Yi, Zi)) = (Xu, Yi, Zs),
we have ¢~ (X, Yy, Z1)) = M(¢y)((Xk, Y, Z1)). It follows that M (n})((Xk, Yi, Zi)) =
M (nydg) ((Xk, Y, Z1)) hence 1] = n3¢,. We then have for any 5 € M(S'):

01(8) = M@))(B) = M(n) M(¢g)(5)
= M)~ gM () (B) = g~ M (112)1(58) = 05(1h(9)),

so that 0] = 0)1),. Choose a € M(S)“). By (10.5) 1,(a) = o and 6, () = 0 (a) = O(r) =
02(), hence the claim.

O

We are now ready for the description of UT(F,r) and L(F,r) as invariant rings:
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Theorem 10.7 Let G(F) = PGOZ (F)x Ss. We have UT(F,r) = M(K)“®) and L(F,r) =
(K x K x K)¢),

Proof It suffices to prove the first claim, since the second follows by restricting the action to
the center. We know already that UT(F,r) C M(K)“Y). Set UT = UT(F,r), L = L(F,r)
and K? = K x K x K. Define n,: K* — K> @y, K3 ¢ =1, 2, by qi(z) = 2 ® 1 and
no(x) = 1®x. Since L is a field, it is clear that for x € K3, x € L if and only if ny(x) = ny(z).
We set 0, = Mg(n): Mg(K3) — Mg(K? @y K3), £ =1, 2. We have Mg(K?) = M(K) and
Mg(K3?®, K3) = M(K)®p, K3. We identify M (K) with UT(F,r)®; K? and Mg(K?®7, K?)
with UT(F,r) ®r (K® ®;, K*). Then the 6, are maps

0,: UT(F,r)®, K* — UT(F,r) @, (K* @ K?)

and, for a € M(K), a € UT(F,r) if and only if 0;(a) = (). Let a € M(K)“®) and
write (by (10.4)) a = 3/h with 8 € M(S)¢*) and h € S, Thus it suffices to show that
M(S)¢®) c UT(F,r). Since the 6, are equal on UT(F,r) they are equal on R(F,r). By
(10.6) they are equal on M (S)¢) hence M(S)¢F) c UT(F,r).

U

We still need to define a trialitarian structure on the central division algebra UT(F,r)
over L(F,r), in particular we need a base field k(F,r) over which L(F,r) is cubic separable
field extension. In view of (10.7) an obvious candidate is the field k(F,7) = K¢). We start

with an intermediate result:

Lemma 10.8 1) Let D € S be as in (10.3), 5); then D &€ k(F,r) and D? € k(F,r), so that
k(F,r)[D] C K is a quadratic separable extension of k(F,r).

2) Let L(F,r)[D] = L(F,r) @y k(F,7)[D] C K*. Let p: K* — K* be the cyclic permu-
tation (z,y,z) — (z,2,y). Then p(L(F,r)[D]) C L(F,r)[D] and L(F,r)[D]/k(F,r)[D] is a
cubic extension, which is cyclic, with the restriction of p to L(F,r)[D] as a generator of the
Galois group.

Proof The first claim follows from (10.3), 5). We prove 2): Let p = (123) € S3. Since
¥, leaves D fixed (see (10.3), 5)), L(F,r)[D] is invariant under Go(F) = PGOJ (F) x As.
Since D & L(F,r), [L(F,r)[D] : L(F,r)] = 2. It then follows from (G(F) : Go(F)) = 2 that
L(F,7)[D] = (K x K x K)%®)_ Let (x,y,2) € L(F,r)[D] C K x K x K. We show that
p((z,y,2)) is invariant under Go(F). Let g = g1p/, g1 € PGOZ (F) and p/ = (123) € As.
Since L(F,r)[D] is invariant under Go(F'), we have

(:L‘,y,z) = wglp’('rvyaz> = Zﬂgl (pl<¢p’x7 ¢p’y7¢p’z)) = wg1 <¢p’zv¢p/x7¢p/y)
- (g1¢p/(z),glgbp/(:v),glgbp/(y))

s0 r = g1¢,(2), y = 1¢y(x) and z = g1¢,(y). On the other hand we have
,lvbgu)' (ﬁ(l’, Y, Z)) = (91%)’ (y)a gl¢p'(z)7 gl,lvbp'(l‘)) = (27 x, y) = ﬁ(l‘, Y, Z)
The same computation holds for g;p'", so that p(z,y, z) € L(F,r)[D] and p(L(F,7)[D]) C

(L(F,r)[D]). Replacing p by o' we see that p is an automorphism of L(F,r)[D]. We claim
that k(F,r)[D] = L(F,r)[D]? is the fixed field of L(F,r)[D] under p. The field k(F,r)[D] is
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clearly invariant under p. For the other inclusion, we recall first that L(F,r)[D] = (K x K x
K)%WE) We show that k(F,7)[D] = KU): clearly k(F,r)[D] C K% and (by definition)
k(F,r) = K¢ Since D ¢ k(F,r) and D? € k(F,r) we have [k(F,r)[D] : k(F,r)] = 2, so
k(F,r)[D] = K% Now, if x € L(F,r)[D] is invariant under p, then € L(F,r)[D]NK C
KGoW) = k(F r)[D].

0

Theorem 10.9 The extension L(F,r)/k(F,r) is of degree 3 and has discriminant D?.

Proof The first claim follows from [k(F,r)[D] : k(F,r)] = [L(F,r)[D] : L(F,r)] = 2 and
[L(F,r)[D] : k(F,r)[D]] = 3. The last claim holds since by adjoining D, L(F,r)[D] over
k(F,r)[D] becomes cyclic.

UJ

Theorem 10.10 Let A(F,r) = k(F,r)[D]. There is an orthogonal involution oyr on
UT(F,r) and an isomorphism

agr: C(UT(F,r),0ur) = P(UT(F,7) @iy A(F, 7))
such that (UT(F,r), L(F,r),our, ayr) is a trialitarian algebra over k(F,r).

Proof Let M(K) be the standard trialitarian structure over K, with isomorphism

a: C(M(K),t) = *M(K) x "M(K).
Let n: Skew(M(K),t) — C(M(K),t) be the canonical embedding (15). The isomorphism
a is uniquely determined by the condition

Qo n((a, b, c)) = ((dp(c), dp(a), dp(b)), (dpz(b), dy(c), dpz(a))) (39)

for any (a,b,c) € Skew(M(K),t). We set UT = UT(F,r). Since UT is a subalgebra of
M (K) which generates M (K) over K we have UT Qj(p,r) K — M(K). The transpose ¢ on
M(K) maps R(F,r) to itself and hence restricts to an involution oyr on UT and C(UT, oyr)
is a subalgebra of the Clifford algebra C(M(K),t); we set ayr = a|pr. To check that ayr
defines a trialitarian structure on UT, it suffices to verify that ayr o n(Skew(U T, UUT)) C

AUT ®prry A). Since Skew(UT, opr) is (linearly) generated over L(F,r) by (X, Yk, Zy)
(see (9.5)), it suffices to check that the images of the (Xj, Yy, Zx) belong to ﬁ(UT Qk(Fr) A).
The embedding UT C M(K) induces an embedding

AUT @iy AF, 7)) C AM(K) @iy AF,T)).

We may choose D™! as a generator of A(F,r), instead of D. Since D € K, we have
an identification M(K) ®krry A(F,r) = M(K) x M(K) given by a® 1 +b® D! —
(a+bD7 ' a—bD™1), so that for ai, ay € M(K):

ay + ag (a1 —ay)

1
2 ot 2

D& D (ar,as). (40)
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With
a1 = (dy(Z). dp(K0). dp(V2))' and  ay = (de (Vi) d2(Z2). de (X))’

n (40), (39) implies that the triple (3(\;, Y, Z) maps to

L [ @o(Zr) + dpe (Vi) . (d XE d( Zk ))D
5 | Xk +d2(Zp) | +3 (olp(g,i d Xk ))D
dp(Yi) + dpe (X (dp(Xk) — d,2(Y3)) D

This element is in AUT @y, A), since it is the sum of elements in R(F,r), hence the claim.
U

We call UT(F,r) the generic trialitarian algebra.

Remark 10.11 The association F' +— UT(F,r) is functorial: any injection F' — F” of fields
yields in a natural way a morphism UT(F,r) — UT(F',r) of trialitarian algebras.

Remark 10.12 The field k(F, r) has transcendental dimension 3r —14-36. We plan to give
some properties of k(F,r) in a forthcoming paper.

11 Specialization

Let T = (T, L,or,ar) be a trialitarian algebra over a field k and 7" = (T", L', o, apr) be
a trialitarian algebra over a field k’. We say that T' specializes to T" if there is a domain
R C k and a trialitarian algebra (B, Lg,0p,ag) over R such that the following conditions
are satisfied:

1) k is the field of fractions of R and there is an isomorphism of trialitarian algebras B&prk ~
T
2) there is a homomorphism ¢: R — k' inducing an isomorphism B®yk’ — T’ of trialitarian
algebras over k'.

In the rest of the section we give a proof of the following

Theorem 11.1 For any trialitarian algebra (T, L,or, ar) over any field extension k O F,
there exists a specialization of the generic trialitarian algebra (UT(F,r), L(F,r),our, aur)
to (T, L,or,ar).

The proof of the theorem is in several steps. The first step is to lift the trialitarian algebra
(UT(F,r), L(F,r),our, ayr) to a trialitarian algebra over a commutative ring whose field of
fractions is k(F,r). We set V; = V ®g R[1/s] for a module V" over a domain R and a nonzero
element s € R.

Lemma 11.2 Let (T, L,o0,«) be a trialitarian algebra over a field k. Let B — T, S — L,
R — k, 6 — A be subrings such that B D S D R, § D R and such that k is the quotient field
of R; further assume that B is central separable over S of degree 8, S is cubic étale over R
and 6 1s quadratic €tale over R. Then there exists s € R, s # 0, such that o restricts to an
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involution of By, p on L ® § restricts to an automorphism of Sy ® 65 and « restricts to an
isomorphism C(B,, o) — p((Bs, o) R, 53); i.e., (Bs, Ss,0,a) is a trialitarian algebra over
R, with the natural map (B, Ss,0,a) ®g, k — (T, L,0,a) an isomorphism of trialitatrian
algebras over k.

Proof The lemma is immediate, observing that B, S and ¢ are finitely generated as R-
modules (in particular Sk = L, 6k = A and Bk =T).
O

From now on we use the same notations R(F,r), Z(F,r), UT(F,r), L(F,r) and k(F,r)
as in Section 9.

Proposition 11.3 There ezists an element s € Z(F,r), s # 0, and F-algebras E C
Z(F,r)s, § C Z(F,r)s[D], d D E, such that:

1) R(F,r)s is Azumaya over Z(F,r)s,
2) Z(F,r)s is cubic étale over E,

3) 0 is quadratic étale over E,

4) k(F,r) is the quotient field of E.

Proof The ring R(F,r) is a prime Pl-ring (see the proof of (9.4)). By [R1, 6.3.27] there
exists s € Z(F,r) such that R(F,r)s is central separable over Z(F,r)s. Since R(F,r)s is
central separable over Z(F,r), and is finitely generated as an F-algebra, Z(F,r)s is a finitely
generated F-algebra. Let D be as in (27); since D* € k(F,r) — L(F,r) we may assume,
after inverting a further element of Z(F,r), that D?> € Z(F,r),. Then the ring Z(F,r),[D] is
a finitely generated F-algebra with quotient field L(F,r)[D]. Let p be the automorphism of
L(F,r)[D] as in (10.8) and let 7 be the automorphism sending D to —D and fixing L(F,r).
Then 5 and 7 generate a subgroup s of Auty(p,) (L(F,r)[D]) isomorphic to S3 and with
fixed field k(F,r). Because of the finite generation of Z(F,r)s over F, one may invert a
further element of Z(F,r), and assume that Ss restricts to an action on Z(F,r),[D]. We set
E = (Z(F,r),[D))¥, 6 = (Z(F,r),)". Then E C Z(F,r)[Df = Z(F,r),. We claim that
k(F,r) is the quotient field of E. Since (Z(F, r)s[D])S3 = F, the norm map L(F,r) — k(F,r)
restricts to a norm map N: Z(F,r)s[D] — E. Let y € k(F,r), y = a/b, a, b € Z(F,r)4[D];
then y = a(Nb)b~! (Nb)~™!, with Nb € E. The element a(Nb)b~! = a-J1,c5, 51 0(b) belongs
to Z(F,r),[D] and, since y is invariant under Sy, yNb = aNbb~! is invariant under Ss. Hence
aNbb~! belongs to E. Thus k(F,r) is the quotient field of E. Since Z(F,r),[D]%* = E,
Z(F,r),[D]? = 6; 6 and Z(F,r), are finitely generated F-algebras which are integral over E.
Hence they are finite as E-modules and we may choose s € F such that Z(F,r)sy and dy

are étale over Fy. Replacing Ey by E, the proposition follows from (11.2).
O

We thus have proved the following

Theorem 11.4 There ezists a nonzero element s € Z(F,r) such that the trialitarian algebra
(UT(F, r), L(F,r), oyr, aUT) restricts to a trialitarian algebra (R(F, r)s, Z(F), T)S,E,a) over
E C k(F,r), the quotient field of E being k(F,r), such that the natural map R(F,r)s ®p
k(F,r) — UT(F,r) is an isomorphism of trialitarian algebras over k(F,r).
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We next show that for any field extension F' C k and any trialitarian algebra (7', L, o, «)
over k, there is a specialization of (R(F, s, Z(F), 7’)3,5,&) to (T, L,o, ).

Let N: K x K x K — K be the norm, i.e., N(z,y,z) = zyz for z, y and z € K.
Let s € Z(F,r) be as in (11.4). Since Z(F,r)s C (S x S x §)s, we have E C Sys. We
further have sy € S such that R(F,r) - S5, = M(Ss,) (see the proof of (9.5)); in particular
R(F,1)s - Snssy = M(Sns.s,) and the natural map 0: R(F,r)s ®g Syss, — M(Sns.sy) 1S
an isomorphism of Sys.s,-algebras. Since the restriction of the standard triality on M (K)
to M(Sns.s,) is the standard triality on this algebra and since its restriction to R(F,r)s is
the restriction of the triality on UT(F,r) to R(F,r)s, 6 is an isomorphism of trialitarian
algebras. Thus we have proved:

Proposition 11.5 The natural map 0: R(F,7)s @ Sns.sy — M(Sns.s,) 1S an isomorphism
of trialitarian algebras.

Let (7, L,0,«) be a trialitarian algebra over k& D F. We recall (see (9.2)) that X =
Homp(R(F,r),T) is an affine space Ry/p(T"). Let k C k' be such that there is an iso-
morphism T ®; k' ~ M (k') of trialitarian algebras. We regard T as a subalgebra of M (k')
through this isomorphism. We view any ¢ € X as a map R(F,r) — T — M(K'). Let
¢y S — k' be such that M(¢py) restricted to R(F,r) is 1. We recall that

Go(Tijk) = Qijie,  Gu(Yiji) = bije  and oy (2ik) = Ciji
if
O((Xk, Yo Zi)) = ((aiji), (bijn), (cin)) € T — M(K'), 1<i,j<8.

Further, given an r-tuple a = (ay, as, . .. ,a,) of elements of T'— M (k') let ¢,: R(F,r) — T
(cf (9.1))be the restriction of M(¢,), where

ba(Tijn) = (A)ijs  DaWise) = (AR)is  dalzijn) = (AD)ij,

for a, = (A}, A2, A3) € M(K'), 1 < k < r. We already remarked that the following
subvarieties of X are open:

U = {veX|y(s)eT”}, seZ(Fr)
Vo= {¢,| (a1,...,a,), with (a1,... ,a),{ =3-8% <r, a k-basis of T}.

Let sy € S beasin (11.5) and let W = {¢) € X | ¢y(s0) # 0}. Clearly X = Homp (R(F,r),T)
is identified with a subvariety of Homp (S, k") under the map ¢ +— ¢, and the set {¢ €
Homp (S, k'), ¢(so) # 0} is open in Homp(S, k). Hence W is open in X. Let s be as in
(11.3). The intersection of the three open subsets Us, V and W of X is not empty (since
F is infinite), hence contains a k-rational point 1,. The element a = (ay,a9,... ,a,) is
such that (ai,as,...,as), £ = 3-8% < r, is a basis of T over k, @Z)Q((Xk,Yk,Zk)) = ag,
1 <k <7, ¢yp,(s50) # 0in k' and 14(s) is a unit of T. We abbreviate 1), = 1 and
¢y, = ¢. The homomorphism ¢: S — £’ has a nonzero value on N(s) - 59, hence yields
a homomorphism ¢: Syss, — k'. Since E C Sys N R(F,r), ¢ restricts to ¢: E — k,
because M(¢)(R(F,r)) = ¢(R(F,r)) and TNk = k. The homomorphism ¢: R(F,r) —
T extends to i: R(F,r)s — T since 1(s) is a unit of 7. Since ¢ is the restriction of
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M(¢): M(Ss) — M(K'), ¥(Z(F,r),) C L and ¥(E) C k (see (11.3)). We claim that the
map ’(Z : R(F,r)s ®4 k — T induced by 9 is an isomorphism of trialitarian algebras. First,
QZ is an isomorphism of k-algebras since the k-basis (ay, ... ,a,) is caught in the image of QZ
To verify that it is an isomorphism of trialities, it suffices to check this after base change to
k'. The composite

~

R(F,1)s @y k Qp k' — R(F,1)s ®4 k' ~
R(F,7)s ®p Snesy @p k' — M(Snesy) @ k' = M(K)

is precisely ¢ ® 1. The isomorphism R(F,71)s @5 Sns.sy — M(Sns.s,) is an isomorphism of
trialities. Hence each arrow in the above composition is an isomorphism of trialities and so
is ¥ ® 1. Thus we have proved:

Theorem 11.6 Let (T, L, o0, «) be a trialitarian algebra over k O F. With the notation as
above, there is an homomorphism ¢: E — k and an homomorphism 1: R(F,r)s — T of
F-algebras such that Y| = ¢ and v R(F,r)s ®4 k — T is an isomorphism of trialitar-
ian algebras. In particular the trialitarian algebra (UT(F, r), L(F, r),aUT,aUT) admits a
specialization.

Remark 11.7 Let A be the discriminant of the cubic extension L(F,r) (as a quadratic
algebra). Then L(F,r)®A is cubic cyclic over A, UT(F,r)®A = M(K)PS0s *4s is a generic
cyclic trialitarian algebra and admits a specialization to any cyclic trialitarian algebra.

12 Generic Orthogonal and Unitary Involutions

Following the pattern used in constructing the generic trialitarian algebra UT(F,r), it is
straightforward to construct a generic algebra with an involution of orthogonal type and
trivial discriminant, as well as a generic algebra with a unitary involution (i.e., of the second
kind). We first describe the orthogonal case. Let S = Flzi], 1 < 4,5 <n, k=1,...,r,
r > n?, with field of fractions K. Let X, k = 1,...,r, be the generic matrix with entries
(Xk)ij = ®iji; Let R(F,n,r) be the F-subalgebra of M, (K) generated by the generic matrices
Xy and their transposes X}. Let Z(F,n,r) be the center of R(F,n,r). The rings R(F,n,r)
and Z(F,n,r) are domains. Let k(F,n,r) be the quotient field of Z(F,n,r) and U(F,n,r)
be the central localization of R(F,n,r), i.e., the localization with respect to all nonzero
elements of Z(F,n,r). The algebra U(F,n,r) is a central simple algebra over k(F,n,r). The
transpose on M, (K) restricts to an involution, denoted o, of R(F,n,r), hence of U(F,n,r).
The involution o restricts to the identity on the center k(F,n,r) and is of orthogonal type.
The pair (U (F ,n,r),a) is the generic central simple algebra with orthogonal involution
considered by Rowen [R1]. On the same lines as in the proof of (10.7) we get Procesi’s result
[P2]:

U(F,n,r) = My (K)PS() and  k(F,n,r) = KFGO-®)

We assume from now on that n = 2[ is even. The matrix X; — X! is skew-symmetric;
let D = pf(X; — X!). The element D? = det(X; — X}) belongs to k(F,2l,7); further
D & k(F,2l,r), otherwise disc(o) = 1, but o specializes to involutions which do not have
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trivial discriminant. Thus A(F,2l,r) = k(F,2l,7)[D] C K is a quadratic field extension
of k(F,21). Let U(F,2l,r) = U(F,2l,r) Qp(ray) A(F,20,7) and 0 = 0 ® 1a(p2,); then
((7 (F,2L,r), 5) is the generic central simple algebra of degree 2/ with involution of orthogonal
type with trivial discriminant; this generic algebra admits a specialization to any central
simple algebra of degree 2/ with involution of orthogonal type with trivial discriminant.
The algebra U(F,2l,r) is the invariant ring of My (K) under the action of PGOJ;(F) and
A(F,2l,7) is the field of invariants for the same action restricted to K.

We finally consider the case of unitary involutions. Let, as above, S = Fzik, Yijk,
1 <i,57<mn,k=1,...,r with field of fractions K. Let R*(F,n,r) be the F-subalgebra
of M,,(K) x M, (K) generated by the pairs (X, Yz), (Y}, Xi). Let Z%(F,n,r) be the center
of R*(F,n,r). The rings R*(F,n,r) and Z“(F,n,r) are domains. Let K(F,n,r) be the
quotient field of Z“(F,n,r) and let U"“(F,n,r) be the central localization of R“(F,n,r)
with respect to all nonzero elements of Z“(F,n,r). The algebra U“(F,n,r) is a central
division algebra over Z(F,n,r). The involution 7: (z,y) — (y',2%) of M,(K) x M,(K)
is of second kind and restricts to an involution (also denoted 7) of R*(F,n,r), hence of
U“(F,n,r). It further restricts to an automorphism ¢ of the center Z"(F,n,r) of order 2.
Let k(F,n,r) be the elements of Z"(F,n,r) fixed under ¢. Then (U“(F, n,r), 7') is a generic
division algebra with unitary involution, in the sense that it admits a specialization to any
central simple algebra with unitary involution over a field £ which contains F. Let further
G(F) = PGL,(F) x Z/2Z, where the action of Z/2Z on PGL,(F) is through x — (a!)™!
for v € GL,(F). The group G(F) acts on S and on M, (S) x M,(S), hence on K and
M, (K) x M, (K) and (M, (K) x M, (K)) 222 — gu(Fn p), (K x K)POLn ()6 2/22 —
Z%(F,n,r) and KPCLnIXZ2L — |(F n p).

Remark 12.1 To construct the generic algebra with unitary involution, we may also start
with a half-split datum: let F; = F(y/u) be a generic quadratic extension, i.e., u is an
indeterminate, and let ¢: F; — F; be the F-linear map with ¢(y/u) = —y/u. Let K; =
K ®p Fy, where K = F(x;;;), and let R(Fy,n,r)) be the Fi-subalgebra of M,,(K;) generated
by generic matrices X and their transposes X;. The unitary involution 7 of M, (K;) which
restricts to 1x ® ¢ on the center and maps X to X} restricts to a unitary involution of
R(Fy,n,r). Let K*(F,n.r) be the center of U*(F,n,r). The group PGU,(F) = {x €
PGL,(Fy) | 7(x) € F*}; acts on M, (K,) and M, (K,)?CU() = U*(F n,r), KFGU"(F) =
K*(F,n,r).
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